The future (of medicine) is biology

It was once quite convenient for manufacturers of deluxe medical widgets to worry only about other manufacturers of deluxe medical widgets. Manufacturers must now widen their perspective to consider current and future competition (and opportunity) from whatever direction it may come. –> Just thought I might chime in and suggest that, if you do make such widgets, it might be a good idea to maybe throw at least an occasional sidelong glance at biotech. (Most of you are, great, but some of you think biotech is too far away to compete…)

Organ Bioengineering is years away and poses little challenge to medical devices …FALSE.  Urinary bladders have been engineered for pediatric applications. Bioengineered skin (the “integumentary” organ) is now routinely bioengineered for burns, chronic wounds, and other wound types. Across a wide range of tissue types (bone, cardiac, smooth muscle, dermal, etc.) scientists — clinicians — have rapidly developed technologies to direct the construction and reconstruction of these tissues and restore their structure and function.

Cell Biology. Of course cells are engineered into tissues as part of the science of tissue engineering, but combine this with advances in engineering not just between cells but between cells AND within cells and (…sound of my head exploding). With the sum of the understanding and capacity to control we have gained over cellular processes over the past few decades now rapidly accelerating, medical science is fast approaching the point at which it can dictate outcomes for cell, tissues, organs, organ systems, and humans (I am not frightened, but excited, with caution).  Our understanding and proficiency gained in manipulating processes from cell division to pluripotency to differentiation to senescence to death OR NOT has profound consequences for fatal, debilitating, incurable, devastating, costly, and nearly every other negative superlative you can conceive.

CRISPR*: This is a new, relatively simple, but extraordinary tool allowing researchers or, more importantly, physicians to potentially swap out defective genes with healthy ones. See Nature.
(* clustered regularly interspersed short palindromic repeats)

Biotech has, over its history, often succeeded in getting attention, but has had less success justifying it, leaving investors rudely awakened to its complexities.  It has continued, however, to achieve legitimately exciting medical therapeutic advances, if only as stepping stones in the right direction, like mapping the human genome, the development of polymerase chain reaction (“PCR”), and biotech-driven advances in molecular biology, immunology, gene therapy, and others, with applications ripe for exploitation in many clinical specialties, Sadly, the agonizing delay between advanced and “available now” has typically disappointed manufacturers, investors, clinicians and patients alike. CRISPR and other tools already available (see Genetic Engineering News and others) are poised to increase the expectations – and the pace toward commercialization – in biotechnology.

Vaccines and Infectious Disease: Anyone reading this who has been under a rock for lo these many years, blissfully ignorant of SARS, Ebola, Marburg, MRSA, and many other frightening acronyms besides HIV/AIDS (more than enough for us already) should emerge and witness the plethora of risks we face (and self-inflict through neglect), any one of which might ultimately overwhelm us if not medically then economically in their impacts. But capitalists (many altruistic) and others have come to the rescue with vaccines such as for malaria and dengue-fever and, even, one for HIV that is in clinicals.

Critical Mass, Synergies, and Info Tech. Biotechnology is succeeding in raising great gobs of capital (if someone has a recommended index/database on biotech funding, let me know?).  Investors appear to be forgetful increasingly confident (in the 1990s, I saw big layoffs in biotech because of ill-advised investments, but that was then…) that their money will result in approved products with protected intellectual property and adequate reimbursement and manageable costs in order to result in attractive financials. The advances in biological and medical science alone are not enough to account for this, but such advances are almost literally being catalyzed by information technologies that make important connections faster, yielding understanding and new opportunities. The net effect of individual medically-related disciplines (commercial or academic) advancing research more efficiently as a result of info tech and info sharing/synergies between disciplines is the expected burst of medical benefits ensuing from biotech. (Take a look also at Internet of DNA.)

Commercial success in tissue engineering, cell therapy and transplantation

Tissue engineering involves taking either autologous, allogeneic or xenogeneic cells and redirecting those cells to carry out fundamental processes. Often the researcher will use a biomaterial matrix and seed the cells into this matrix. The redirection may take the form of stimulating the cells to become stem cells or precursor cells, or it may mean genetic modification of those cells. The processes which may be carried out seem almost infinite in variety: from regenerating heart muscle cells (myocytes) damaged from a heart attack, to regrowing islet cells to answer the body’s need for insulin and glucose regulation, to regrowing a thumb, including bone, cartilage, vasculature and skin. According to current industry and academic research, the potential exists to cure neurological and immunological disorders such as Parkinson’s, multiple sclerosis, and many cancers; to regrow most or all of an organ that has been damaged through disease or trauma, including the kidney, liver, intestine, bone, skin and pancreas; to take a cell sample from a patient and grow it into a new tooth bud which can be transplanted into the patient’s jaw to replace a missing tooth; and to grow blood vessels for use in coronary artery bypass graft, thereby avoiding the surgical process and pain inherent in harvesting the saphenous vein. It seems that tissue engineering and cell therapy may find applications in every system in the body.

At least 250 companies in the US, Europe and the Far East are working in tissue engineering and regenerative medicine. The larger pharmaceutical and medical device companies have initially been cautious about investing in and/or developing tissue engineering therapeutics, but a consensus recognizes that a full consideration of the device or drug industry's competitive landscape is incomplete if not factoring the possibilities of tissue engineered or cell therapy solutions.

tissue-pieThe US alone spends nearly $35 billion annually to care for patients with end stage organ failure. The alternatives are basically organ transplant, living on indefinite hold with an organ substitute such as kidney dialysis, if such a substitute exists, or death. According to the United Network for Organ Sharing (UNOS), at any one time in the US there are some 80,000 people waiting for donated organs, many of whom die before a suitable organ or tissue becomes available. If a suitable organ can be procured, the transplant procedure itself is very expensive, and not always successful. If it succeeds and the organ functions as intended, then the patient usually must take expensive immuno-suppressive drugs for life. Physicians and researchers have long sought other means to treat these patients, and tissue engineering is one avenue of significant promise.

The major areas of clinical need for alternative treatments are generally also those areas most attractive to companies, which must ultimately recoup their heavy research and development investments. These areas include cardiology, neurology, orthopedics, urology, skin, dental and organ replacement and regeneration.

Research and development in tissue engineering and cell therapy have been accelerating, which has led to a steady stream of commercial developments, including product launches.  The existing market therefore already stands at over $500 million and the growth curve on the markets for these technologies does not appear to be leveling soon, with compound annual growth rates for the aggregate of tissue/cell therapy markets exceeding 20%.

The global market for tissue engineering, cell therapy and tissue/organ transplantation is the subject of pending report #S520, from MedMarket Diligence.