Billions in global wound care sales, yet chronic wounds still a chronic problem

Healthcare systems move billions in global wound care sales, yet chronic wounds still are a chronic problem. Despite the legion of products developed for wound care, from dressings to bioengineered skin, the obesity- and age-driven increase in chronic slow-healing and non-healing wounds plague healthcare systems globally. Results according to MedMarket Diligence’s biennial, 2018 Wound Management report (#S254).

Trends in wound prevalence by type
Trends in wound prevalence by type including chronic wounds

BIDDEFORD, Maine – April 1, 2018 – PRLog — Research and routine clinical practice in wound management have advanced the science to better understand and address chronic wounds, but much work remains for research and manufacturing to impact the growing caseload.

Chronic wounds represent a large but still underestimated problem for health systems globally and industry needs to step up in response, according to MedMarket Diligence, LLC.

“Our recent research shows that chronic wounds, which have long been no secret to clinicians, epidemiologists, and product manufacturers as a growing health problem, are actually even more prevalent and costly than has been previously reported,” says Patrick Driscoll of MedMarket Diligence, who has tracked wounds in clinical practice and industry for 25 years.

Care of chronic wounds is a significant, global burden on healthcare systems. In the USA alone, it is estimated that at least 6.7 million people suffer with chronic wounds, requiring treatment in excess of $20-50 billion per year (estimates vary according to the definitions). A report from the UK suggests, based on National Health System (NHS) data, that chronic wound prevalence in developed countries is about 6% and that care of chronic wounds accounts for around 3-5.5% of total healthcare spending in those countries. (Phillips CJ, et al. Estimating the costs associated with the management of patients with chronic wounds using linked routine data. Int Wound J. 2015. doi: 10.1111/iwj.12443.)

Definitions help clinicians determine whether a wound is healing or not. For example, for venous leg ulcers (VLUs), if the wound has not shown at least a 40% reduction in wound size in about four weeks, then additional therapies are called for. A non-healing foot ulcer is generally defined to be any ulcer that is unresponsive to standard therapies and persists after four weeks of standard care. Once a foot ulcer occurs, unfortunately some 60% of patients end up moving into the chronic non-healing category. Many diabetics develop foot ulcers.

Chronic wounds and burns continue to present challenging clinical problems. For example, chronic wounds may present with persistent infections, inflammation, hypoxia, non-responsive cells at the wound edge, the need for regular debridement, etc. For DFUs, it is important for the patient to continuously wear an offloading device such as a special boot. Additionally, the practitioner must carefully debride not only the necrotic tissue in the wound bed, but the wound edges. Cells at the wound edge seem to be unresponsive to typical healing signals, and therefore must be removed to promote and support proper healing.

Wound management is the subject ongoing research and publications ( by MedMarket Diligence, LLC.

Patrick Driscoll

Wound management practice patterns, products by wound type

From Report #S251, “Wound Management to 2024”.

Surgical wounds account for the vast majority of skin injuries. We estimate that there are approximately 100 million surgical incisions per year, growing at 3.1% CAGR, that require some wound management treatment. About 16 million operative procedures were performed in acute care hospitals in the USA. Approximately 80% of surgical incisions use some form of closure product: sutures, staples, and tapes. Many employ hemostasis products, and use fabric bandages and surgical dressings.

Surgical procedures generate a preponderance of acute wounds with uneventful healing and a lower number of chronic wounds, such as those generated by wound dehiscence or postoperative infection. Surgical wounds are most often closed by primary intention, where the two sides across the incision line are brought close and mechanically held together. Overall the severity and size of surgical wounds will continue to decrease as a result of the continuing trend toward minimally invasive surgery.

Surgical wounds that involve substantial tissue loss or may be infected are allowed to heal by secondary intention where the wound is left open under dressings and allowed to fill by granulation and close by epithelialization. Some surgical wounds may be closed through delayed primary intention where they are left open until such time as it is felt it is safe to suture or glue the wound closed.

Traumatic wounds occur at the rate of 50 million or more every year worldwide. They require cleansing and treatment with low-adherent dressings to cover the wound, prevent infection, and allow healing by primary intention. Lacerations are a specific type of trauma wound that are generally minor in nature and require cleansing and dressing for a shorter period. There are approximately 20 million lacerations a year as a result of cuts and grazes; they can usually be treated in the doctors’ surgery, outpatient medical center or hospital A&E departments.

Burn wounds can be divided into minor burns, medically treated, and hospitalized cases. Outpatient burn wounds are often treated at home, at the doctor’s surgery, or at outpatient clinics. As a result, a large number of these wounds never enter the formal health service system. According to the World Health Organization (WHO), globally about 11 million people are burned each year severely enough to require medical treatment. We estimate that approximately 3.5 million burns in this category do enter the outpatient health service system and receive some level of medical attention. In countries with more developed medical systems, these burns are treated using hydrogels and advanced wound care products, and they may even be treated with consumer-based products for wound healing.

Medically treated burn wounds usually receive more informed care to remove heat from the tissue, maintain hydration, and prevent infection. Advanced wound care products are used for these wounds. There are approximately 6.0 million burns such as this that are treated medically every year.

Hospitalized burn wounds are rarer and require more advanced and expensive care. These victims require significant care, nutrition, debridement, tissue grafting and often tissue engineering where available. They also require significant follow-up care and rehabilitation to mobilize new tissue, and physiotherapy to address changes in physiology. Growth rates within the burns categories are approximately 1.0% per annum.

Chronic wounds generally take longer to heal, and care is enormously variable, as is the time to heal. There are approximately 7.4 million pressure ulcers in the world that require treatment every year. Many chronic wounds around the world are treated sub-optimally with general wound care products designed to cover and absorb some exudates. The optimal treatment for these wounds is to receive advanced wound management products and appropriate care to address the underlying defect that has caused the chronic wound; in the case of pressure ulcers a number of advanced devices exist to reduce pressure for patients. There are approximately 9.7 million venous ulcers, and approximately 10.0 million diabetic ulcers in the world requiring treatment. Chronic wounds are growing in incidence due to the growing age of the population, and the growth is also due to increasing awareness and improved diagnosis. Growth rates for pressure and venous ulcers are 6%–7% in the developed world as a result of these factors.

Diabetic ulcers are growing more rapidly due mainly to increased incidence of both Type I and maturity-onset diabetes in the developed countries around the world. The prevalence of diabetic ulcers is rising at 9% annually. Every year 5% of diabetics develop foot ulcers and 1% require amputation. The recurrence rate of diabetic foot ulcers is 66%; the amputation rate rises to 12% with subsequent ulcerations. At present, this pool of patients is growing faster than the new technologies are reducing the incidence of wounds by healing them.

Wound management products are also used for a number of other conditions including amputations, carcinomas, melanomas, and other complicated skin cancers, all of which are on the increase.

A significant feature of all wounds is the likelihood of pathological infection occurring. Surgical wounds are no exception, and average levels of infection of surgical wounds are in the range of 7%–10%, depending upon the procedure. These infections can be prevented by appropriate cleanliness, surgical discipline and skill, wound care therapy, and antibiotic prophylaxis. Infections usually lead to more extensive wound care time, the use of more expensive products and drugs, significantly increased therapist time, and increased morbidity and rehabilitation time. A large number of wounds will also be sutured to accelerate closure, and a proportion of these will undergo dehiscence and require aftercare for healing to occur.

For the detailed coverage of wounds, wound management products, companies, and markets, see report #S251, “Worldwide Wound Management to 2024”.

Management of burn wounds in clinical practice

Major burns can present a substantial physical assault to the body, affecting multiple organ systems. Burn patients may require resuscitation, hemodynamic stabilization, oxygen support, nutritional support, protection against infection, and extensive wound care. The attentions of a dedicated burn team may be necessary to provide the services and support required to manage the physiological, social, and psychological needs of a seriously burned individual.

This is an excerpt from MedMarket Diligence report #S245, "Worldwide Wound Management, 2007-2016: Established and Emerging Products, Technologies and Markets in the U.S., Europe, Japan and Rest of World."

The average hospital stay for patients admitted for burns is 24 days, although the most severely burned patients may require several months of hospital intervention. Survivors of extensive burns will require rehabilitation periods up to seven times the length of their hospitalization. Over the last ten years, improvements in burn wound care and the pressures of DRG systems in various European countries have resulted in reductions in the average hospital stays for burn patients.

The traditional classification for burns (first to fourth degree) has been superseded by classification as partial-thickness, full-thickness, and complete burn wounds. Burns classified under the old system as first degree are not included in the current classification system unless they include injury to greater than 30% of the total body surface (TBS). These wounds are fiery red, very painful, not blistered and can be expected to heal uneventfully in three to five days.
Partial-thickness burns, formerly second degree, extend through the epidermis and may penetrate into the dermis. Partial-thickness wounds will heal by regeneration and should regain full function and appearance.

Full-thickness (third degree) burns penetrate the dermis and may involve subcutaneous tissue. Skin appendages such as hair follicles, sebaceous glands, and sweat glands are destroyed and healing will occur through scar formation and re-epithelialization from the wound borders, or grafting if the wound is extensive. In addition to visible effects, scarring leads to permanently compromised performance of the skin and articulation of the surrounding tissue. The scarred skin is inelastic and the underlying metabolism is compromised by the surface changes. Often, badly scarred tissue needs to be resected and re-engineered by transplantation to reverse these adverse effects. This takes time, is costly, and very traumatic to the patient.

A number of types of burns are referred to burn centers, including partial-thickness burns exceeding 20% of body surface area and full-thickness burns exceeding 10% of body surface area in the adult, along with burns involving the face, hands, feet, perianal area, genitalia, or joints; also circumferential burns of an extremity or chest wall, chemical burns, electrical burns, inhalation burns, and burns complicated with another major injury.

Complete burns (fourth degree burns) extend into the subcutaneous tissue to include muscle, fascia or bone. A complete burn may initially resemble a full-thickness burn and caution must be exercised to confirm the burn severity. Complete burns may generate systemic toxic reactions or rapidly lead to infection or sepsis. Between 44 degrees and 51 degrees Celsius, the rate of cellular destruction doubles with each degree increase in temperature. Above 51 degrees C, brief exposure produces rapid tissue destruction; whereas at 70 degrees C and above a one-second exposure causes full-thickness burns. Burns may also be induced by electricshock, radiation, or toxic chemicals.

 Old and New Classification Systems for Burns 

Old System
New System
First degree
Not classified
Fiery red, very painful,  but not blistered
Second degree
Extend through the epidermis and may penetrate into the dermis. Healing by regeneration; full function and appearance should be recovered.
Third degree
Penetrate the dermis and may involve subcutaneous tissue. Hair follicles, sebaceous glands, and sweat glands are destroyed. Healing occurs through scar formation and re-epithelialization
Fourth degree
Complete burns
Extend into the subcutaneous tissue to include muscle, fascia or bone. They may generate systemic toxic reactions or rapidly lead to infection or sepsis.
Source: MedMarket Diligence, LLC

The seriousness of a burn is determined not only by its classification according to thickness or depth, but also by the extent that the burn covers the body. Several scoring systems have been developed to help determine if the burn represents minor, moderate, or major insult to the burn victim. The fastest assessment tool for evaluating burn coverage is the rule of nines. Developed for use with adult patients, the rule of nines divides the body into sections and assigns a percentage of total body surface (TBS) to each section. The clinician can quickly assess which segments of the body are burned and add up the predetermined percent areas assigned to each section to reach a reasonable estimate of TBS affected. The rule of nineteen is a similar

scoring system developed for pediatric burn patients. Both rules are useful for initial assessment when speed is critical.Full-thickness burn wounds heal by secondary intention, where the wound bed is filled by granulation tissue consisting of connective tissue and blood vessels, and by epithelialization where a new epidermis grows over granulation tissue to seal the wound. Large full-thickness burns often require the use of skin grafts to hasten closure once a sufficient bed of granulation tissue is available. In major burn victims, there is often not enough of the patient’s own healthy skin to provide sufficient skin for grafting, and this has spurred the development of a number of forms of skin substitutes.

Although burn wounds are generally sterile immediately following the initial burn, the presence of eschar and serum provide an ideal medium for contamination and proliferation by pathogenic micro-organisms. Contamination may be caused by endogenous flora from the patient’s own body or exogenous flora from contact with healthcare workers or the environment. Infection follows a predictable course, progressing from early colonization by gram-positive organisms followed by gram-negative bacteria. Pathological infection is recognized by wound bacterial counts in excess of 105 micro-organisms per gram of tissue. The likelihood of infection, which may progress to sepsis and death, is reduced through aggressive debridement and the use of topical antimicrobials and/or oral antibiotics. In burn patients, topical antimicrobials such as silver sulfadiazine are used in addition to systemic antibiotics to attack any infection at an early stage. This use of antibiotics is unusual in wound care practice in Europe and reflects the high probability that severe burn patients will develop dangerous infections.

Severely burned patients will need to receive systemic nutrients and large quantities of intravenous fluids. The primary concern during the first 24 hours after a patient is severely burned is to maintain body fluids. Intravenous nutrients have also been found to lead to a reduced mortality rate in burn victims.


Prevalence of dermal applications for sealants and glues

Skin securement has always been an essential final step in surgical procedures. In early years, the skin surface was sutured; in recent years a number of advances have been made, including new tapes, sutures, staples, hemostats, and glues.


Approximately 24,000 burn victims in the United States received skin grafts every year. These represent the very worst burn cases; in fact, approximately 25% of this group will die from their injuries. Glues and sutures are used to secure skin grafts in place and hemostats are used to prevent bleeding and to prepare the new skin for repair. Skin grafts provide an immediate covering for the patient that prevents further cell death, stimulates repair, and reduces fluid loss through the burnt skin. Products in this category may also be required to treat the skin after donor site material is taken from an intact region on the patient’s skin for skin grafting. Advances in sealant, hemostat, and closure technologies offer the potential to accelerate repair by creating the right environment to accelerate the healing process and provide better repair.

Pressure Ulcers

About 1.5 million pressure ulcer patients were treated in the United States in 2008. These wounds develop in immobile patients who often suffer from underlying biochemical deficiencies that lead to inadequate skin healing. Prevalence is highest in the old and infirm, and incidence is increasing in line with aging of the population. Sealants, hemostats, and closure products provide opportunities for a radical surgical method to treat these life-threatening wounds, which normally would be treated with conservative (though often sophisticated) wound healing products designed to reduce points of pressure, mask smell and absorb excess moisture while the body repairs itself. The strongest opportunity for use of surgically oriented products for repair of pressure ulcers is among young paraplegics and short-term acute care patients who are immobilized but otherwise healthy (approximately 5% of all pressure ulcers).

Diabetic Ulcers

Diabetes causes many abnormalities in tissue biochemistry and nutrition, many of which lead to impaired tissue healing. In addition, diabetes leads to conditions of hypoxia and peripheral neuropathy that can directly cause ulcers. Approximately 800,000 diabetics in the United States have diabetic foot ulcers; closure and securement products offer a surgical route to aiding repair that may offer potential to accelerate repair in a number cases.

Venous Ulcers

There are approximately one million venous ulcer patients in the United States today. Prevalence is increasing in line with aging demographics exacerbated by a sedentary lifestyle. Venous ulcers are caused by underlying vascular and venous flow abnormalities, which can often be treated by knowledgeable application of pressure bandaging and, in some cases, appropriate topical wound care. However, this treatment is largely symptomatic and many physicians believe surgical intervention to repair the underlying vascular abnormalities is required to effect a cure and avoid tissue breakdown. Sealants, hemostats, and closure products offer a surgical route to aiding repair that may offer potential to accelerate repair in a number cases.

Plastic Surgery

About 2 million cosmetic augmentation procedures are performed in the United States every year. The most popular procedures are liposuction (455,000) and breast augmentation (365,000). Most of the latter use synthetic materials and biomaterials for augmentation purposes. Other procedures where sealant products may be relevant include rhinoplasty (200,000), abdominoplasty (170,000) and eyelid surgery (230,000).

Adjunctive products for securement and closure offer potential to improve surgical procedure, reduce infections, and improve aesthetic and physiological properties of newly repaired tissues, as well as offering more rapid rehabilitation and the avoidance of donor site morbidity in approximately 27,000 of these operations involving the use of donated tissue from another region of the patient’s body.


dermal applications of sealants

Source: MedMarket Diligence, LLC; Report #S175, "Worldwide Surgical Sealants, Glues and Wound Closure, 2009-2013."