Bioengineered Skin and Skin Substitutes, Sales and Growth, 2017 to 2026

The use of bioengineered skin and skin substitutes in the treatment of wounds is on a strong, but variable growth curve. Currently, the highest sales of these products in wound management occurs in the United States, where sales are in excess of $700 million annually already and growth in sales of these products is projected at or near 10% annually through 2026.

While China “only” has sales of just over $200 million in bioengineered skin and skin substitutes, the projected >20% CAGR to 2026 will result in China’s sales approximating U.S. sales in a decade.

Source: MedMarket Diligence, LLC; Report #S254.

Wound Care Market Shares Worldwide

Analyzing data from Report #S254 ,”Wound Management to 2026″, we present the distribution of top competitors’ sales in each segment in 2017. Smith & Nephew, Johnson & Johnson, and 3M dominate the global wound management, with varying dominance between them — or by other companies — in each segment.

Source: MedMarket Diligence, LLC; Report #s254. (Publishing March 2018)

S&N leads the global market, following closely by JNJ. Both companies are active in multiple segments of wound management. S&N has lower traditional wound management product sales (simple dressings and bandages) and higher sales of “advanced” wound management products. J&J does $800 million more sales in traditional dressings, gauze and bandages than S&N, but lesser involvement in newer wound technologies such as NPWT, bioengineered skin, and growth factors.

Source: MedMarket Diligence, LLC; Report #s254. (Publishing March 2018)

 

Six key trends in the market for surgical sealants

Here are six key trends we see in the global market for surgical sealants, glues, and hemostats:

1.  Aggressive development of products (including by universities, startups, established competitors), regulatory approvals, and new product introductions continues in the U.S., Europe, and Asia/Pacific (mostly Japan, Korea) to satisfy the growing volume of surgical procedures globally.

 Source: Report #S290. “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.”

2. Rapid adoption of sealants, glues, hemostats in China will drive much of the global market for these products, but other nations in the region are also big consumers, with more of the potential caseload already tapped than the rising economic China giant. Japan is a big developer and user of wound product consumer. Per capital demand is also higher in some countries like Japan.

3. Flattening markets in the U.S. and Europe (where home-based manufacturers are looking more at emerging markets), with Europe in particular focused intently on lowering healthcare costs.

4. The M&A and deal-making that has taken place over the past few years (Bristol-Myers Squibb, The Medicines Company, Cohera Medical, Medafor, CR Bard, Tenaxis, Mallinckrodt, Xcede Technologies, etc.) will continue as market penetration turns to consolidation.

5. Growing development on two fronts: (1) clinical specialty and/or application specific product formulation, and (2) all purpose products that provide faster sealing, hemostasis, or closure for general wound applications for internal and external use.

6. Bioglues already hold the lead in global medical glue sales, and more are being developed, but there are also numerous biologically-inspired, though not -derived, glues in the starting blocks that will displace bioglue shares. Nanotech also has its tiny fingers in this pie, as well.

See Report #S290, “Worldwide Sealants, Glues, and Hemostats Markets, 2015-2022”.

The future of medicine in 2037

In the post below from 2016, we wrote of what we can expect for medicine 20 years into the future. We review and revise it anew here.

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, in the U.S., whether the Affordable Care Act (“Obamacare”) persists (most likely) or is replaced with a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective.  -[Editor’s note: After multiple attempts by the GOP to “repeal and replace”, the strengths of Obamacare have outweighed its weaknesses in the minds of voters who have thus voiced their opinions to their representatives, many seeking reelection in 2018.]

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions. Cancer and genomics, in particular, has been a lucrative study (see The Cancer Genome Atlas). Immunotherapy developments are also expected to be part of many oncology solutions. Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it.
    [Editor’s note: Immunology has surged in a wide range of cancer-related research yielding new weapons to cure cancer or render it to routine clinical management.]
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.

Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics. [Editor’s note: Our view of this stands, as artificial pancreases are maturing in development and reaching markets. Cell therapy still offers the most “cure-like” result, which is likely to happen within the next 20 years.]

  • Diabetes Type 2 (adult onset) will be a significant problem, governed as it is by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.

Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines. [Editor’s note: the burden of Type 2 on people, families, communities, and governments globally should motivate policy, legislation, and other action, but global initiatives have a long way to travel.]

  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, more long-term and/or less costly solutions.
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.

    As the human genome is the engineering plans for the human body, it is a potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions. [Editor’s note: CRISPR and other gene-editing techniques have accelerated the pace at which practical and affordable gene-therapies will reach the market.]
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). [Editor’s note: We are revising our optimism about drug development being more sophisticated and streamlined. To a measurable degree, “distributed processing systems” have proven far more exciting in principle than practice, since results — marketable drugs derived this way — have been scant. We remain optimistic as a result of the rapid emergence of artificial intelligence (AI) and deep learning, which have have very credible promise to impact swaths of industry, especially in medicine.]
    This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma, including pharmacogenomics to predict drug response. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.

  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems. [Editor’s note: In the late 1980s, laparoscopy revolutionized surgery for its less invasiveness. Now, NOTES procedures and external energy technologies (e.g., gamma knife) have now proven to be about as minimally invasive as medical devices can be. To be even less invasive will require development of drugs (including biotechs) that succeed as therapeutic alternatives to any kind of surgery.]

    By 2035, technologies such as these will measurably reduce inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of minimally invasive technologies (e.g., especially the NOTES technology platform). A wide range of other technologies (e.g., gamma knife, minimally invasive surgery/intervention, etc.) across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit while minimizing or eliminating collateral damage.

  • Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits. [Editor’s note: Before AI and other systems will truly have an impact, IT and its policy for healthcare in the next 10 years will solve the problem of health data residing inertly behind walls that hinder efficient use of the rich, patient-specific knowledge that physicians and healthcare systems might use to improve the quality and cost of care.]
  • Personalized medicine. Perfect matches between a condition and its treatment are the goal of personalized medicine, since patient-to-patient variation can reduce the efficacy of off-the-shelf treatment. The thinking behind gender-specific joint replacement has led to custom-printed 3D implants. The use of personalized medicine will also be manifested by testing to reveal potential emerging diseases or conditions, whose symptoms may be ameliorated or prevented by intervention before onset.
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.Other technologies being developed aggressively now will have an impact over the next twenty years, including medical/surgical robots (or even biobots), neurotechnologies to diagnose, monitor, and treat a wide range of conditions (e.g., spinal cord injury, Alzheimer’s, Parkinson’s etc.).

The breadth and depth of advances in medicine over the next 20 years will be extraordinary, since many doors have been recently opened as a result of advances in genetics, cell biology, materials science, systems biology and others — with the collective advances further stimulating both learning and new product development. 


See Reports:

Report #290, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.”

Report #S254, “Wound Management to 2026.”

What’s next in sealants, glue, hemostats…and why?

From July 2016 published Report #S290.

Here are six key trends we see in the global market next in surgical sealants, glues, and hemostats:

  1. Aggressive development of products (including by universities, startups, established competitors), regulatory approvals, and new product introductions continues in the U.S., Europe, and Asia/Pacific (mostly Japan, Korea) to satisfy the growing volume of surgical procedures globally.
  2. Rapid adoption of sealants, glues, hemostats in China will drive much of the global market for these products, but other nations in the region are also big consumers, with more of the potential caseload already tapped than the rising economic China giant. Japan is a big developer and user of wound product consumer. Per capital demand is also higher in some countries like Japan.
  3. Flattening markets in the U.S. and Europe (where home-based manufacturers are looking more at emerging markets), with Europe in particular focused intently on lowering healthcare costs.
  4. The M&A, and deal-making that has taken place over the past few years (Bristol-Myers Squibb, The Medicines Company, Cohera Medical, Medafor, CR Bard, Tenaxis, Mallinckrodt, Xcede Technologies, etc.) will continue as market penetration turns to consolidation.
  5. Growing development on two fronts: (1) clinical specialty and/or application specific product formulation, and (2) all purpose products that provide faster sealing, hemostasis, or closure for general wound applications for internal and external use.
  6. Bioglues already hold the lead in global medical glue sales, and more are being developed, but there are also numerous biologically-inspired, though not -derived, glues in the starting blocks that will displace bioglue shares. Nanotech also has its tiny fingers in this pie, as well.

See Report #S290, “Worldwide Sealants, Glues, and Hemostats Markets, 2015-2022”.

Cardiovascular procedure volumes in the rest of the world

Cardiovascular procedures are high volume, big business in the well developed U.S, European, and Asia/Pacific markets. But much potential procedure volume has been tapped in these markets, with any appreciable growth limited to low volume, emerging procedures.

By comparison, the less-tapped “Rest of World” potential (i.e., non-U.S., non-Europe, non-Asia/Pacific) for growth is significant. Below is illustrated the 2016 size and growth to 2022 for the major cardiovascular procedures in the Rest of World.

Source: “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”, Report #C500 (MedMarket Diligence, LLC)

The rise and fall of medical technologies

When does one recognize that horse-and-buggy whips are in decline and auto-mobiles are on the rise?

When does one recognize that a new technology is a definite advance over established ones in the treatment of particular disease, in cost or quality?

Technologies go through life cycles.

A medical technology is introduced that is found effective in the management of a disease. Over time, the technology is improved upon marginally, but eventually a new technology, often radically different, emerges that is more effective or better (cheaper, less invasive, easier to use). It enters the market, takes market share and grows, only to be later eclipsed by a new (apologies) paradigm. Each new technology, marginal or otherwise, advances the limit of what is possible in care.

Predicting the marginal and the more radical innovation is necessary to illustrate where medicine is headed, and its impact. Many stakeholders have interest in this — insurance companies (reimbursing technologies or covering the liabilities), venture capitalists, healthcare providers, patients, and the medical technology companies themselves.

S-curves illustrate the rise in performance or demand over time for new technologies and show the timing and relative impact of newer technologies when they emerge. Importantly, the relative timing and impact of emerging technologies can be qualitatively and quantitatively predicted. Historic data is extremely useful predicting the rise and fall of specific medical technologies in specific disease treatment.

Following are two examples of diseases with multiple technologies arcing through patient demand over time.

  • Ischemic Heart Disease Past, Current, and Future Technologies
    • Open bypass
    • Percutaneous transluminal coronary angioplasty
    • Minimally invasive direct coronary artery bypass (MIDCAB)
    • Percutaneous CABG
    • Stem-cell impregnated heart patches

The treatment of ischemic heart disease, given the seriousness of the disease and its prevalence, has a long history in medicine and within the past fifty years has a remarkable timeline of innovations. Ischemia is condition in which inadequate blood flow to an area due to constriction of blood vessels from inflammation or atherosclerosis can cause cell death. In the case of cardiac ischemia, in which the coronary arteries that supply the heart itself with blood are occluded, the overall cell death can result in myocardial infarction and death.

The effort to re-establish adequate blood flow to heart muscle has evolved from highly invasive surgery in which coronary artery bypass graft (CABG) requires cutting through the patient’s sternum and other tissues to access the heart, then graft arteries and/or veins to flow to the poorly supplied tissue, to (2) minimally invasive, endoscope procedures that do not require cutting the sternum to access the heart and perform the graft and significantly improve healing times and reduced complications, to as illustrated, multiple technologies rise and fall over time with their impacts and their timing considered.

Technology S-Curves in the Management of Ischemic Heart Disease

(Note: These curves are generally for illustrative purposes only; some likely dynamics may not be well represented in the above. Also note that, in practice, demand for old technologies doesn’t cease, but declines at a rate connected to the rise of competing technologies, so after peaking, the S-curves start a descent at various rates toward zero. Also, separately note that the “PTCA” labeled curve corresponds to percutaneous transluminal coronary angioplasty, encompassing the percutaneous category of approaches to ischemic heart disease. PTCA itself has evolved from balloon angioplasty alone to the adjunctive use of stents of multiple material types with or without drug elution and even bioabsorbable stents.)
Source: MedMarket Diligence, LLC

Resulting Technology Shifts

Falling: Open surgical instrumentation, bare metal stents.
Rising and leveling: thoracoscopic instrumentation, monitors
Rising later: stem-cells, extracellular matrices, atherosclerosis-reducing drugs
Rising even later: gene therapy

The minimally invasive technologies enabled by thoracoscopy (used in MIDCAB) and catheterization pulled just about all the demand out of open coronary artery bypass grafting, though the bare metal stents used initially alongside angioplasty have also been largely replaced by drug-eluting stents, which also may be replaced by drug-eluting balloon angioplasty. Stem cells and related technologies used to deliver them will later represent new growth in treatment of ischemia, at least to some degree at the expense of catheterization (PTCA and percutaneous CABG). Eventually, gene therapy may prove able to prevent the ischemia to develop in the first place.

  • Wound Management Past, Current, and Future Technologies
    • Gauze bandages/dressings
    • Hydrogel, alginate, and antimicrobial dressings
    • Negative pressure wound therapy (NPWT)
    • Bioengineered skin substitutes
    • Growth factors

Another great example of a disease or condition treated by multiple evolving technologies over time is wound management, which has evolved from simple gauze dressings to advanced dressings, to systems like negative pressure wound therapy, hyperbaric oxygen and others, to biological growth factors to bioengineered skin and skin substitutes.

Technology S-Curves in Wound Management

Source: MedMarket Diligence, LLC (Report S254)

Resulting Technology Shifts

Falling: Traditional gauze and other simple dressings
Falling: NPWT, hyperbaric oxygen
Rising: Advanced wound dressings, bioengineered skin, growth factors

Wound management has multiple technologies concurrently available, rather than sequential (when one largely replaces the other) over time. Unsurprisingly, traditional dressings are in decline. Equipment-related technologies like NPWT and hyperbaric oxygen are on the wane as well. While wound management is not a high growth area, advanced dressings are rising due to their ability to heal wounds faster, an important factor considering that chronic, slow-healing wounds are a significant contributor to high costs. Bioengineered skin is patient-specific, characterized by faster healing and, therefore, rising.

Wound Forecast to 2026
© 2017, MedMarket Diligence, LLC.

Market positions in sealants, glues, hemostats fluid in U.S., Europe, Asia/Pacific

Market shares for sales of sealants, glues, and hemostats vary considerably from region to region globally due to the significant variations in the local market demand, rate of adoption of specific manufacturers’ products, the regulatory climate, local economies, and other factors. Consequently, manufacturers with significant share of sales in the U.S. or Europe or Asia/Pacific may have considerably lower or higher shares in other regions.

In the U.S., Ethicon and Baxter have dominant positions in sales of surgical sealants. However, in Europe and Asia/Pacific, Baxter has substantially smaller position, particularly relative to competitors like Takeda Pharmaceuticals and The Medicines Company.

Source: Report #S290, MedMarket Diligence, LLC

In the market for hemostats, similarly, Ethicon and Baxter have dominant position in the U.S. market, but in Asia/Pacific and Europe, Baxter is subordinate to Takeda Pharmaceuticals, CryoLife, and others.

Source: Report #S290, MedMarket Diligence, LLC

In medical glues, CryoLife has risen to the fore with its BioGlue, such that it has a global leading position as well as specifically in the U.S., Europe, and Asia/Pacific.

Source: Report #S290, MedMarket Diligence, LLC

Untapped potential for sealants, glues, hemostats in wound caseloads and procedures

Today’s surgeon has a broad range of products from which to choose for closing and sealing wounds. These include sutures, stapling devices, vascular clips, ligatures, and thermal devices, as well as a wide range of topical hemostats, surgical sealants and glues.

However, surgeons still primarily use sutures for wound closure and securement—sutures are cheap, familiar and work most of the time. Now, in addition to reaching for a stapling device, the surgeon must frequently decide at what point to augment or replace the commonly used items in favor of other products, which product is best for what procedure or condition, how much to use, and ease of use in order to achieve optimal patient outcomes. Because of budget pressures, the surgeon must also consider price when selecting a product. Of course in the USA, the product must also be FDA-approved, although the surgeon still has the choice of using a product off-label.

In the areas of sealants, hemostats and glues, there is room for both improvement and additional products.  There are a number of products already on the market, but the fact is that there is no one product that meets all needs in all situations and procedures. There are few products that stand out from the rest, apart, perhaps, from DermaBond® and BioGlue®. There are unmet needs, and companies having the necessary technology, or which may acquire and further develop the technology, can enter this market and launch novel items. These products have yet to significantly tap the potential for wound management and medical/surgical procedures.

Note: Log10 scale; Chronic wounds includes pressure, venous/arterial and diabetic ulcers.

Source: MedMarket Diligence, LLC; Report #S290.

Sealants, Fibrin and Others

Numerous variants of fibrin sealant exist, including autologous products. “Other” sealants refers to thrombin, collagen & gelatin-based sealants.

Fibrin sealants are used in the US in a wide array of applications; they are used the most in orthopedic surgeries, where the penetration rate is thought to be 25-30%. Fibrin sealants can, however, be ineffective under wet surgical conditions. The penetration rate in other surgeries is estimated to be about 10-15%.

Fibrin-based sealants were originally made with bovine components. These components were judged to increase the risk of developing bovine spongiform encephalopathy (BSE), so second-generation commercial fibrin sealants (CSF) avoided bovine-derived materials. The antifibrinolytic tranexamic acid (TXA) was used instead of bovine aprotinin. Later, the TXA was removed, again due to safety issues. Today, Ethicon’s (JNJ) Evicel is an example of this product, which Ethicon says is the only all human, aprotinin free, fibrin sealant indicated for general hemostasis. Market growth in the Sealants sector is driven by the need for improved biocompatibility and stronger sealing ability—in other words, meeting the still-unsatisfied needs of physician end-users.

High Strength Medical Glues

Similar to that of sealants, the current market penetration of glues in the US is about 25% of eligible surgeries. There are several strong points in favor of the use of medical glues: their use can significantly reduce healthcare costs, for example by reducing time in the surgical suite, reducing the risk of a bleed, which may mean a return trip to the OR, and general ease of use. Patients seem to prefer the glues over receiving sutures for external wound closure, as glues can provide a suture-free method of closing wounds. In addition, if glues are selected over sutures, the physician can avoid the need (and cost) of administering local anesthesia to the wound site.

Hemostats

Hemostats are normally used in surgical procedures only when conventional methics to stop bleeding are ineffective or impractical. The hemostat market offers opportunities as customers seek products that better meet their needs. Above and beyond having hemostatic agents that are effective and reliable, additional improvements that they wish to see in hemostat products include: laparoscopy-friendly; work regardless of whether the patient is on anticoagulants or not; easy to prepare and store, with a long shelf life; antimicrobial; transparent so that the surgeon continues to have a clear field of view; and non-toxic; i.e. preferably not made from human or animal materials.


Drawn from, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022:  Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World.” Report #S290.

Add tick cement to the list of natural adhesives pursued for medical applications

In past posts, we have reported on multiple naturally-occurring substances or methods for strong adhesion that are being investigated for their potential to be exploited for medical or surgical adhesion. These include adhesives from remora, mussels, geckos, crab shells, barnacles, Australian burrowing frogs, spider webs, porcupine quills, sandcastle worms, etc.

Researchers from MedUni Vienna and Vienna University of Technology are now investigating 300 different ticks for the “cement” used by the parasites to attach to hosts. The goal is to study the composition of the natural tick “dowel” used by the mouthparts of ticks and determine how it might serve as a template for new tissue adhesives.

The Vienna research also notes other natural adhesives are similarly being investigated for medical and surgical use:

Other potential “adhesive donors” are sea cucumbers, which shoot sticky threads out of their sac; species of salamander, which secrete extremely fast-drying adhesive out of skin glands, if attacked; or insect larvae, which produce tentacles or crabs, which can remain firmly “stuck,” even under water.

The incentive for studying natural adhesives is that they have been driven by evolution to provide strong adhesion without toxicity in various wet or dry conditions that are challenging for existing synthetic or existing natural glues (e.g., fibrin glues, cyanoacrylates, etc.). Surgical glues currently in use have some limitation arising from lesser strength, ease of use, toxicity, and other shortcomings. New glues will gain wider adoption, capturing procedure volume used with sutures, clips and other closure methods, particularly in internal use, if they are stronger and/or provide tighter seals (without needing to be combined with sutures on the same incision/wound) and do not cause the toxicity that some high strength medical glues do (e.g., synthetics like cyanoacrylates; “super glues”). The biologically-derived glues (or the surfaces structures of gecko feet) avoid the toxicities of synthetics and have often proven to have very high tensile strength. (The fast-curing cement used by barnacles has been shown to have a remarkable tensile strength of 5,000 pounds per square inch.)

Edit: See also, Biomimetic Glue, based on shellfish natural adhesive.


MedMarket Diligence tracks the technologies, clinical practices, companies, and markets associated with medical and surgical sealants and glues, with the most recent coverage in, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022,” (report #S290).