Bioengineered Skin and Skin Substitutes, Sales and Growth, 2017 to 2026

The use of bioengineered skin and skin substitutes in the treatment of wounds is on a strong, but variable growth curve. Currently, the highest sales of these products in wound management occurs in the United States, where sales are in excess of $700 million annually already and growth in sales of these products is projected at or near 10% annually through 2026.

While China “only” has sales of just over $200 million in bioengineered skin and skin substitutes, the projected >20% CAGR to 2026 will result in China’s sales approximating U.S. sales in a decade.

Source: MedMarket Diligence, LLC; Report #S254.

Wound Care Market Shares Worldwide

Analyzing data from Report #S254 ,”Wound Management to 2026″, we present the distribution of top competitor’s sales in each segment in 2017. Smith & Nephew, Johnson & Johnson, and 3M dominate the global wound management, with varying dominance between them — or by other companies — in each segment.

Source: MedMarket Diligence, LLC; Report #s254. (Publishing March 2018)

S&N leads the global market, following closely by JNJ. Both companies are active in multiple segments of wound management. S&N has lower traditional wound management product sales (simple dressings and bandages) and higher sales of “advanced” wound management products. J&J does $800 million more sales in traditional dressings, gauze and bandages than S&N, but lesser involvement in newer wound technologies such as NPWT, bioengineered skin, and growth factors.

Source: MedMarket Diligence, LLC; Report #s254. (Publishing March 2018)


Wound Care Shares: Traditional/Advanced Products, Fragmented/Dominated

Traditional wound care products (gauze, non-adherents, and adhesive dressings) encompass low innovation, commodity-like pricing and ultimately different sets of competitors than advanced wound care products.

Below illustrates the global market shares of wound care sales in traditional versus advanced  products. JNJ and S&N have swapped positions in the traditional versus advanced wound markets.

Source: Report #S254; MedMarket Diligence.


Among wound care’s most fragmented markets in terms of competitive activity are hydrocolloids and foam dressings, with no one competitor dominating the market. While 3M and S&N control significant shares of the hydrocolloid and foam dressings market, their aggregate share is still well under 50%.

Global Wound Management Market Shares in
Hydrocolloids and Foam Dressings, 2017

Source: Report #S254; MedMarket Diligence.

By comparison, other markets have clearly dominant players, such as in negative pressure wound therapy (NPWT) and growth factors used in wound care. In each, there is clearly one dominant player and the top two players control a large majority of each market.

Global Wound Management Market Shares in
Hydrocolloids and Foam Dressings, 2017

Source: Report #S254; MedMarket Diligence.



Country and Regional Variability in Growth of Wound Management Sales

As illustrated in a previous post, wound management products are a spectrum from the simple to the complex:

Source: MedMarket Diligence Report #S254.

Generally, the longer the product has been around (e.g., gauze), the less complex it is compared to emerging technologies…

…BUT simpler is easy to adopt and, with well established sales, growth on a percentage basis will be low (see area in red).

Generally, new technologies incorporate rarer materials, have more complex construction, and may cost considerably more…

…BUT complex technologies may be far more effective clinically than older technologies and may allow treatment where no older technology could, and with low initial sales (penetrated potential), growth on a percentage bases will be high (see area in green).

Country and Regional Variation in Growth Rates

While this size-to-growth dynamic exists for most product types, the dynamic varies from one geographic region to the next. The time point at which a particular product/technology starts to be more rapidly adopted — or the rate at which use of  established products are use starts to decline — can vary considerably from country to country.

As a result, there will be variability in sales growth rates for a product in one country/region versus another.

For example, the 2017 to 2026 compound annual growth rate in sales of Alginates in wound management range from a low of 5.3% in one country to a high of 24.3% in another country. (If you make alginates, in which country would YOU like to compete?)

Regionally, as in USA versus Europe versus Asia/Pacific, etc., there is less variation in growth rates for any given product in that region. For alginates:

country-to-country variation in CAGR: 19%
region-to-region variation in CAGR: 7.8%

In other words, the difference between the countries with the highest and lowest CAGRs for alginate sales is 19%, while the difference between regions shows one region with a 7.8% higher CAGR for alginates than the lowest growth region.

Source: MedMarket Diligence, LLC; Report #S254.

Before chasing after that high growth rate, it is important to know the underlying volume. (Sales of $1 in year 1 and $2 in year 2 is a 100% growth rate, but it’s absolute growth of only $1.)

See the full REPORT, “Wound Management to 2026” details or order online. Please also see the forecast and market share data available separately from the report.


Highest growth in wound management sales to 2026 by product, region

Whenever we complete a new analysis of the global wound management market, as we have just done, we like to present top line findings, such as the top “region-wound segment” growth markets.

We assess the 10-year sales size and growth for 13 different wound product segments worldwide, in major geographic regions and individual countries — USA, Rest of N. America, Latin America, Europe, United Kingdom, Spain, France, Germany, Italy, Rest of Europe, Asia/Pacific, Japan, Korea, China, Rest of Asia/Pacific, Rest of World.

Below we show the top 15 combinations of regional market and product segments in descending order of their compound annual growth rate from 2017 to 2026.

Source: MedMarket Diligence, LLC; Report #S254.

As becomes clear, the greatest relative growth in sales in the area of wound management is in several wound care product types — bioengineered skin & skin substitutes, growth factors — and the geographic regions of Japan, Rest of World, China, Germany, Asia-Pacific.  This reflects the high level of investment and attention in Asian markets, especially China.

[The complete set of wound market forecast data, from 2016 to 2026, is available at 2018 Wound Management Report #S254. The associated full report, including this data, will be publishing March 2018.]


USA slipping behind Asia/Pacific markets in wound care sales

We present data from our 2016 to 2026 forecast of the global market for wound management products. (Data available, full report this month.)

At a glimpse, you can see the overall trend in global wound management, including the relative size of each market. (The four regional sales charts are shown on the same scale to illustrate this.)  Most notably, the USA dominance of this global market is fading, as aggregate Asia/Pacific sales of all wound products will eclipse USA sales within the forecast period.







Source: MedMarket Diligence, LLC; Report #S254.

Looking at just the aggregate of all wound product types, Asia/Pacific relative sales are squeezing out shares in every other region.Source: MedMarket Diligence, LLC; Report #S254.

When we then look specifically at the USA versus Asia/Pacific, it illustrates that by 2020, Asia/Pacific’s sales of wound management products will eclipse those of the U.S., making it the largest regional wound management market.

Source: MedMarket Diligence, LLC; Report #S254.

Changes in Fortunes for Wound Management Products

Over the 2017 to 2026 period, the compound annual growth rate for the entire wound management market will approach 6%, a respectable rate of growth for an established market, though not quite high enough to encourage investment in the market as a whole.

Of course, the total wound market is comprised of a number of VERY large, slow-growing segments, like traditional adhesive dressings, gauze dressings, and non-adherent dressings, which have annual sales at $3.8 billion, $3.2 billion, and $1.3 billion, respectively.

The large volume, slow growth of the aggregate masks growth in the following segments:

  • Bioengineered skin and skin substitutes
  • Alginates
  • Foam dressings
  • Growth factors

These wound care segments have had, and will continue to have, annual growth rates at or near double-digit through 2026.

The end result of variable growth rates is that the 2026 Wound Care Market (worldwide), by comparison to 2017, will show the following changes (up/down) in each segment’s share of the total market.

Source: MedMarket Diligence, LLC; Report #S254 (publishing Mar. 2018).

Bioengineered skin, alginates lead wound market growth

Big revenues, as in $ billions, are turned over every year in traditional wound dressings and gauze, while emerging technologies designed to have far more impact on wound management are driving the fastest percentage revenue growth. Data from “Wound Management to 2026” (report S254) shows the size-to-growth distribution of wound product revenue streams over the 2017 to 2026 period.

Source: MedMarket Diligence, LLC; Report #S254.

Six key trends in the market for surgical sealants

Here are six key trends we see in the global market for surgical sealants, glues, and hemostats:

1.  Aggressive development of products (including by universities, startups, established competitors), regulatory approvals, and new product introductions continues in the U.S., Europe, and Asia/Pacific (mostly Japan, Korea) to satisfy the growing volume of surgical procedures globally.

 Source: Report #S290. “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.”

2. Rapid adoption of sealants, glues, hemostats in China will drive much of the global market for these products, but other nations in the region are also big consumers, with more of the potential caseload already tapped than the rising economic China giant. Japan is a big developer and user of wound product consumer. Per capital demand is also higher in some countries like Japan.

3. Flattening markets in the U.S. and Europe (where home-based manufacturers are looking more at emerging markets), with Europe in particular focused intently on lowering healthcare costs.

4. The M&A and deal-making that has taken place over the past few years (Bristol-Myers Squibb, The Medicines Company, Cohera Medical, Medafor, CR Bard, Tenaxis, Mallinckrodt, Xcede Technologies, etc.) will continue as market penetration turns to consolidation.

5. Growing development on two fronts: (1) clinical specialty and/or application specific product formulation, and (2) all purpose products that provide faster sealing, hemostasis, or closure for general wound applications for internal and external use.

6. Bioglues already hold the lead in global medical glue sales, and more are being developed, but there are also numerous biologically-inspired, though not -derived, glues in the starting blocks that will displace bioglue shares. Nanotech also has its tiny fingers in this pie, as well.

See Report #S290, “Worldwide Sealants, Glues, and Hemostats Markets, 2015-2022”.

The future of medicine in 2037

In the post below from 2016, we wrote of what we can expect for medicine 20 years into the future. We review and revise it anew here.

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, in the U.S., whether the Affordable Care Act (“Obamacare”) persists (most likely) or is replaced with a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective.  -[Editor’s note: After multiple attempts by the GOP to “repeal and replace”, the strengths of Obamacare have outweighed its weaknesses in the minds of voters who have thus voiced their opinions to their representatives, many seeking reelection in 2018.]

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions. Cancer and genomics, in particular, has been a lucrative study (see The Cancer Genome Atlas). Immunotherapy developments are also expected to be part of many oncology solutions. Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it.
    [Editor’s note: Immunology has surged in a wide range of cancer-related research yielding new weapons to cure cancer or render it to routine clinical management.]
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.

Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics. [Editor’s note: Our view of this stands, as artificial pancreases are maturing in development and reaching markets. Cell therapy still offers the most “cure-like” result, which is likely to happen within the next 20 years.]

  • Diabetes Type 2 (adult onset) will be a significant problem, governed as it is by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.

Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines. [Editor’s note: the burden of Type 2 on people, families, communities, and governments globally should motivate policy, legislation, and other action, but global initiatives have a long way to travel.]

  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, more long-term and/or less costly solutions.
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.

    As the human genome is the engineering plans for the human body, it is a potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions. [Editor’s note: CRISPR and other gene-editing techniques have accelerated the pace at which practical and affordable gene-therapies will reach the market.]
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). [Editor’s note: We are revising our optimism about drug development being more sophisticated and streamlined. To a measurable degree, “distributed processing systems” have proven far more exciting in principle than practice, since results — marketable drugs derived this way — have been scant. We remain optimistic as a result of the rapid emergence of artificial intelligence (AI) and deep learning, which have have very credible promise to impact swaths of industry, especially in medicine.]
    This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma, including pharmacogenomics to predict drug response. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.

  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems. [Editor’s note: In the late 1980s, laparoscopy revolutionized surgery for its less invasiveness. Now, NOTES procedures and external energy technologies (e.g., gamma knife) have now proven to be about as minimally invasive as medical devices can be. To be even less invasive will require development of drugs (including biotechs) that succeed as therapeutic alternatives to any kind of surgery.]

    By 2035, technologies such as these will measurably reduce inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of minimally invasive technologies (e.g., especially the NOTES technology platform). A wide range of other technologies (e.g., gamma knife, minimally invasive surgery/intervention, etc.) across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit while minimizing or eliminating collateral damage.

  • Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits. [Editor’s note: Before AI and other systems will truly have an impact, IT and its policy for healthcare in the next 10 years will solve the problem of health data residing inertly behind walls that hinder efficient use of the rich, patient-specific knowledge that physicians and healthcare systems might use to improve the quality and cost of care.]
  • Personalized medicine. Perfect matches between a condition and its treatment are the goal of personalized medicine, since patient-to-patient variation can reduce the efficacy of off-the-shelf treatment. The thinking behind gender-specific joint replacement has led to custom-printed 3D implants. The use of personalized medicine will also be manifested by testing to reveal potential emerging diseases or conditions, whose symptoms may be ameliorated or prevented by intervention before onset.
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.Other technologies being developed aggressively now will have an impact over the next twenty years, including medical/surgical robots (or even biobots), neurotechnologies to diagnose, monitor, and treat a wide range of conditions (e.g., spinal cord injury, Alzheimer’s, Parkinson’s etc.).

The breadth and depth of advances in medicine over the next 20 years will be extraordinary, since many doors have been recently opened as a result of advances in genetics, cell biology, materials science, systems biology and others — with the collective advances further stimulating both learning and new product development. 

See Reports:

Report #290, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.”

Report #S254, “Wound Management to 2026.”