When Medical Devices are “Finished”

In last week’s Wall Street Journal, Stephen Oesterle, the vice president for medicine and technology at Medtronic was paraphrased for his startling conclusion that medical devices are “finished”. His point, “You can’t keep stuffing gizmos into people to treat end-stage disease… When biotechnology gets right, we’re finished. Because it’s restorative, not palliative as devices are.”

While subsequent to his statement other Medtronic representatives tried to put this in the context of something other than foretelling the death knell of Medtronic itself, his point is, IMHO, right on target.

Setting aside pharmaceuticals in its own category and addressing biotech and medical devices, there is a fundamental distinction between these two approaches to healthcare that defines the status quo and an inevitable future for both. Succinctly put though Dr. Oesterle’s comments are, I can endeavor to put it in other words: medical devices treat symptoms while biotech — if not now, then ultimately, treats underlying disease.

Therein lies a distinction that has turned the medical device industry into a major market worldwide, while the biotech industry has yet to reach a fraction of its commercial potential.  With a focus on symptoms, arguably a much lower technololgy hurdle than the myriad challenges faced by biotech as it seeks to effectively eliminate disease(s) at their source, the medical device industry produces limited, though very specific clinical endpoints that are arguably very incomplete, yet highly valuable.  (The coronary stent does not cure the patient of his/her atherosclerosis; it just maintains the crucial patency of coronary arteries to keep the patient alive.)

This is a topic i have addressed in the past, sometimes hammering the point endlessly to anyone who would listen.  Biotech is ideal. Devices are now. However, lest one think that there is a point at which we simply switch from devices to biotech (when Medtronic folds!), the reality is that devices, imperfect as the are, will continue to evolve. To this point, below please find the August 2006 edition of “MedMarket Outlook” from our discontinued “MedMarkets” publication. 


(August 2006)  MedMarket Outlook: Medical Devices in a Future Scenario



The future of medtech is proceeding along paths determined by technologies already developed, but also guided by the need to provide less invasive treatment of disease with better long-term outcomes. If these paths are followed to their logical endpoint, medical technologies of the future can be predicted. Concurrently, paths toward the development of treatments via biotechnology have their own logical endpoints. Many biotechnologies have the potential to preempt medical technologies, due to their intrinsic design as “rational therapeutics” — treatments of the root cause of disease rather than only its symptoms.

Here we consider the development in medical technology to have largely achieved its potential and we describe the devices and their characteristics as they would exist in such a future. We make no assertion that each and every technological hurdle that needs to be crossed can indeed be crossed (we imply the possibility); we simply give the benefit of doubt to the technologies that may be developed in order to consider what benefits may ensue.

In short, the future of medtech will be such that two general categories of technologies exist; those that are focused on treating specific pathologies and symptoms and those that represent organs or organ systems. Lastly, it should be noted that we envision this “future scenario” not as one happening 25 years (or more) hence, but in some cases less than a decade.

Disease- and Trauma-Specific Device Solutions
In the idealized future medtech industry, medical devices will have been optimized to facilitate the body’s own capacity to heal. Devices will be constructed to provide the function — e.g., maintaining the patency of a vessel lumen (stents), serving as a temporary or permanent lumen (AAA graft), be a fully functioning hip replacement, etc. — as long as (and no longer than) necessary for the body to complete all of the repairs of its own that are possible. In this sense, devices will be developed to help the body help itself, then get out of the way to not impede further healing. In particular, bioresorption will have become highly sensitive to timing (stents will dissolve or deconstruct to be excreted at the precise time needed). This will include extracellular matrices used for the regeneration of tissues of all types of tissue (muscle, bone, even nerve) with the matrix facilitating tissue ingrowth before being resorbed. Similarly, biocompatibility will become a more active feature of implanted devices such that they will go well beyond simply being inert or inducing no immunological or other response and will at a maximum, will elute drugs, proteins or other agents that will actively stimulate or facilitate the body’s normal healing process.

Devices will be highly intelligent, sensing the conditions in their environment and responding as necessary. Responses will include bioresorption, release of drugs, change in shape or other responses

Devices will be tracked wirelessly for status, providing patient and clinician with information about the status of healing, alerting each to changes requiring intervention long before adverse symptoms appear. This tracking will also include tracking of the device itself, revealing data on device integrity and alerting the patient/clinician to any change.

Increasingly complex devices will be implanted percutaneously, endoscopically or by other means to minimize any trauma. During implantation, the devices will have very low profiles to enable them to traverse to the target site through very small and/or sensitive (e.g., enervated) tissues.

Cost will have played a critical role in determining the effectiveness of device development, but not simply considering the device cost itself, which may be significant. The true cost of these devices will be determined thoroughly as a measure of their ability to achieve specific outcomes compared to the costs of any and all technologies or approaches that compete for similar outcomes.

These device technologies are based on the premise of technologies under development now. Advances in materials technologies, drug/device innovations and many others may produce opportunities for devices with benefits largely unforeseen at this time.

Biohybrid, artificial organs
In light of medtech’s general inability to compete directly with the premise of biotech — treatment of root disease rather than symptoms, medtech will have the potential nonetheless to provide solutions to disease and trauma, with the solutions being ones in which medtech devices or systems so thoroughly address the symptoms of diseases as to emulate cures of them.

In the future world we are envisioning, many organs and organ systems will be available to replace or augment the functions of organs that have been removed or are dysfunctional as a result of disease or trauma. The organs will be comprised of mechanical and biological components that will variously house reservoirs of therapeutics that will periodically and painlessly be replenished, contain bioreactors that will express patient-specific proteins, hormones and other naturally occurring substance, or provide other therapeutic intervention (as with defibrillators, pacemakers, etc.). Mechanical components will be made of materials producing no inflammatory response, inducing no clot formation or other effect and will otherwise be completely neutral to the body.

These organ systems, like the devices described above, will be intelligent, sensing multiple parameters and responding in real-time basis to maintain ideal homeostatic control specific to the patient’s dynamic needs (sleep, stress, exercise, metabolism, etc.). The “intelligence” of the systems will be represented in ways from the simple, including elution based on the concentration of substances (platelets, specific proteins, etc.) in the environment (such as to prevent restenosis), to the complex, including microprocessor-calculated basal or bolus infusion of drug or other substance based on biofeedback-mediated function (e.g., insulin pump and glucose monitor).

The status of the biohybrid organ/system will be monitored remotely by the patient and, in turn, by the physician through wireless communication to display current patient condition, trended functions and other status. Eventually, such external monitoring will become unnecessary other than for unusual events, such as extreme changes in patient condition that, even though the organ/system may be well prepared to respond to, warrants attention by the patient and/or clinician.

The biohybrid organ/system status will also be communicated wirelessly, displaying data on its sensor functions, reservoir levels or other parameters of its function, as well as the system’s integrity. As with monitoring the organ/system’s environment (noted in previous paragraph), the monitoring of the organ/system itself will eventually be silent other than for unusual or adverse events signalling a problem with the system itself.

The power sources employed by these systems will have evolved from being extremely long-term batteries that only infrequently require recharging (done remotely) to motion-activated power (or similar alternative energy sources) to potentially biological sources deriving power from the patient, such as (in a very advanced scenario) through exploitation of energy from adenosine triphosphate (ATP).

Examples of the organs or organ systems that may ultimately be developed (and are in process) include the following:

  • Pancreas – Glycemic control will be ensured through basal infusion of insulin and periodic bolus matching fluctuating needs.
  • Heart – Effective replacement of normal heart function will be achieved through designs and construction that will produce no hemolysis, and produce cardiac output precisely matching circulatory need.
  • Lung – An artificial lung will largely be achieved through the development of highly effective materials that virtually mimic alveolar epithelium at the interface between lung and blood vessels, enabling efficient gaseous exchange.
  • Liver – The myriad functions of the liver will have made it one of the most difficult organs to replace, in effect demanding the development of a master organ with multiple separate organ components addressing the needs of homeostasis (proteins, fat/cholesterol, hormones, vitamins, glucose, etc.), synthesis (proteins, bile acids, cholesterol), storage, excretion, filtering and defensive barrier against bacteria in the gut. The development of biofeedback and control across such multiple areas will be a herculean accomplishment.
  • Kidney – Filtration and regulation of water and inorganic electrolytes in the artifical kidney, by comparison to the development of the artificial liver, will be considerably less challenging.
  • Skin/integumentary – As an organ system, the integumentary serves an extremely important one in its defense against infection. Artificial integumentary systems may well be developed, although tissue engineering technologies are likely to soon eclipse any artificial technologies.
  • Limbs – The necessary development of biomechanics and systems to enable autonomic and conscious neural control of limbs may ultimately only be limitated by the strength the patient’s healthy anatomy to which it is joined. Fine-motor skills will likely be indistinguishable from biological limbs. Sensitivity to heat and pressure may even be regulated to maximize tolerance of the environment such that performance will exceed that of normal limbs. Overall appearance and in detail will be indistinguishible from normal limbs.

In varying degrees, these developments are already on their way toward completion. And while, indeed, many hurdles remain before some of these scenarios will be possible, one must consider these hurdles in comparison to the hurdles faced by the biotechnology industry as it pursues solutions a variety of diseases and disorders. The “rational therapeutic” holy grail is one that has for biotech been a source of endless promise and endless solicitation of additional venture capital. But as “imperfect” as some of
the medtech solutions above may be, their potential as self-contained, cure-like solutions for disease make them eminently more promising for their near-term potential than do “perfect” biotech solutions.

Leave a Reply