New medical technologies at startups in December 2015

Listed below are the technologies under development at medical technology startups identified in December 2015 and added to the Medtech Startups Database.

  • 3D-printed, patient-specific implants
  • Therapeutic temperature management.
  • Vessel preparation angioplasty balloon.
  • Control system for minimally invasive surgical tools.
  • Surgical solutions focused on robotic and other technology.
  • Undisclosed products, but based on brain-gut pathway; principals with background in diabetes, endocrinology.
  • Robotically-assisted minimal access surgery.
  • Novel catheter device as a treatment for heart failure with preserved ejection fraction.

For a historical listing of medtech startups identified by month, see link.

Medical devices versus nature

If one is in the position of needing to look to the future of medical technology to identify opportunities or predict challenges in the market (and who in this industry is not?), then it is hard to not factor into the analysis two very different current trends and play them out toward the resulting future market impact. One trend is the biotech-driven trend of elucidating natural processes of health, disease and healing in order to exploit understanding of the natural sciences to solve medical problems. The other trend is the technology-centric trend of developing hardware, largely surgical or at least interventional technology, that may dramatically achieve better surgical/interventional endpoints. To (over)simplify, one could say this is the biotech versus device polemic, but that really does simplify the dynamics too far, suggesting there is ultimately an either/or conclusion, which is false.

A group at Harvard-MIT earlier this year reported in the Proceedings of the National Academy of Sciences on a flexible, waterproof and even biodegradable bandage based on the sticky feet of the gecko. The lesson of the gecko is that the gecko’s stickiness comes from nanoscale fibers or "pillars" that increase the surface adhesion, which the Harvard-MIT team mimicked in the construction of the tape with nanostructures in the surface. Now, while this does not really represent a biological solution (such as the protein-based glue used by mussels to attach to surfaces; see also Report #S175), the study of natural processes revealed a solution that could be modeled in medical technology. This points up the huge number of opportunities that reside in nature directly (e.g., mussel glue) or indirectly (nanostructured adhesive based on the gecko). After millions and millions of years of evolution that has produced survival advantage for the natural world, it would almost be viewed as foolish to pursue solutions to medical problems without considering that those problems have already been solved, somewhere, in nature. Some scientists are convinced, for example, that the biological diversity resident in the Amazon rain forest holds cures for cancer and many other diseases.

At the other end of the spectrum is technology like the Da Vinci (Intuitive Surgical, Inc.), a four-arm, flexible wrist robot on which are mounted miniaturized tools and cameras controlled by a surgeon, at a cost of $1.4 million, not including the cost of parts, maintenance and training. The system enhance the precision of surgeons performing prostate surgery and is also being adapted to the performance of hysterectomies, fibroid removal (and other gyn procedures), heart valve replacement and kidney surgery. The system enable a level of control that is simply not possible by the freehand surgeon, which enables much more challenging procedures, ones that may heretofore have been inoperable or simply not possible without causing unacceptably high complications. Intuitive’s Da Vinci is not alone in this trend. Accuray has developed its CyberKnife for its ability to precisely attack tumors without surgery. There are also complex systems under development by Hansen Medical and Stereotaxis.

Certainly, the emergence of medical/surgical robotics can be viewed analogously, albeit simplistically, to the advent of laparoscopy, with its technology-intensive approach that minimizes trauma to the patient. But, the several-thousand dollar investment of laparoscopy hardly compares to $1.4 million (plus) for Da Vinci. Nonetheless, the facts of Da Vinci’s market success to date have been clear, since Intuitive has been exceeding Wall Street’s expectations for sales, revenues, etc., all of which is nothing less than remarkable in this era of cost containment.

What do these trends say for future market opportunities? The "biotech" trend tells us that there are many opportunities yet to be discovered based on the amount of disease (and even trauma) in the world and the lack of cures for them that are not "perfect" — reversing the disease condition and restoring health without the smallest complication. Of course, there also remain a huge number of "nearly perfect" solutions, or even less perfect ones that hold potential due to the fact that they provide even the most marginal advantage over existing therapies, if such exist at all for the treatment of specific diseases.

The "technology-intensive" trend suggests that the limitation of what we can achieve is not dictated by our knowledge of natural systems but is determined only by the apparent limits of our imagination and technology development well outside of healthcare (e.g., robotics are not inherently medical), which will include materials sciences, information technology and the stunning array of technology hybrids that can be constructed to achieve specific outcomes (RFID-embedded surgical instruments, ingestible "pillcams", etc.).

The two schools of thought are not mutually exclusive, by any stretch of the imagination. In fact, there are are enormous opportunities in the marriage of the two. The mandate for medtech manufacturers seems to be then that they should, on the one hand, come to as thorough an understanding possible of the natural biological processes associated with the disease or disorder of interest and, on the other hand, imagine and apply any and all technology, regardless of scientific discipline, that will result in an improved outcome for the patient. With the rapid growth in our understanding of the complex etiologies of disease and with the spectrum of technologies that can be constructed to serve specific functions, the only limitations appear to be imagination and reimbursement, and with Intuitive Surgical’s market success, one would wonder if the latter is even a problem.