Medtech fundings for February 2017

Medtech fundings for February 2017 stand at $500.4 million, led by the $75 million credit facility secured by BioDelivery Sciences, the $45 million private placement by Corindus Vascular Robotics, the $41 million funding of Rhythm, Inc., the $37.2 million funding of Entellus Medical, and the $33 million funding of startup Surrozen.

Below are the top fundings for the month. For a complete list of fundings, see link.

Source: Compiled by MedMarket Diligence, LLC

For a historical listing of fundings in medtech, see link.

New medical technologies at startups in December 2015

Listed below are the technologies under development at medical technology startups identified in December 2015 and added to the Medtech Startups Database.

  • 3D-printed, patient-specific implants
  • Therapeutic temperature management.
  • Vessel preparation angioplasty balloon.
  • Control system for minimally invasive surgical tools.
  • Surgical solutions focused on robotic and other technology.
  • Undisclosed products, but based on brain-gut pathway; principals with background in diabetes, endocrinology.
  • Robotically-assisted minimal access surgery.
  • Novel catheter device as a treatment for heart failure with preserved ejection fraction.

For a historical listing of medtech startups identified by month, see link.

The future of medtech demands more and better imagination

I frequently see conclusions about the the future of medtech derived by analysts who are walking backward looking at their feet — living by the tenet of “past is prologue”. This type of “foresight” presumes an unchanging set of forces, leading (at best) to a conclusion that the future will hold more of the same.

Yet, the future of medtech is dictated far more significantly not by what has already happened, or as a result of past trends continuing as future trends, but by what has not happened yet. The major thrust of any significant growth (and isn’t growth what interests us?) comes primarily from events that do not as clearly follow from past events:

  • Surgical device sales forecasts are uprooted by introduction of laparoscopy
  • Tissue engineering preempts conventional treatments in wound, orthopedics, cardiology…
  • Success in type 1 diabetes treatment will be determined by device advances as well as cell therapy advances
  • Systems biology reveals risks and opportunities previously unseen

If you view your markets myopically, then you consider your competitors to be limited to those whose products most resemble your own. If you have a long view, you consider what might be possible based on available/emerging technology to tap into untapped demand or simply create latent demand that no company has yet been sufficiently visionary or innovative to seize. What patient populations, clinical practice patterns and their trends are the pulse that you monitor (or are you even monitoring these)?  There is a gap between what is available and a whole set of patients virtually untreated, physicians unsatisfied, and third party payers struggling.  Are you an angioplasty catheter manufacturer — or a coronary artery disease solution?  Do you make devices — or outcomes?

Source: Yann Girard https://www.linkedin.com/pulse/life-explained-through-technology-yann-girard

Look at staid “device” companies like Baxter International and see that they have “biosurgery” divisions.  Look at Medtronic and appreciate that they are as sensitive to developments in glucose monitoring and insulin pump technologies as they are to the litany of cell therapy approaches under pursuit. (These companies are fundamentally aware of technology “S-curves” — see graphic at right.)

Virtually every area of current clinical practice is subject to change when considering drug/device hybrids, biomaterials, nanotechnology/MEMs devices and coatings, biotechnology, pharmaceutical (and its growing sophistication in drug development), western medicine and eastern medicine, healthcare reform, cost containment, RFIDs, 3D printing, information technology  — it is imperative to see the upside and downside of these.

These are some of the forces that less characteristic of the past that are leading to startling new success in medtech developments:

  • Materials technologies are redefining the nature and functional limits of medical devices
  • Technologies more closely aligned with cure than symptomatic treatment gain rapid acceptance
  • The practice of considering outcomes measures of highly diverse technology solutions to disease has ascended to prominence in the mindsets of healthcare systems and payers
  • The use of information technologies and cross-medical discipline initiatives enables rapid determination of likely success and failures in whole new ways

Aside from the demands for operational efficiency and managing cash flows, the success or failure of medical technology companies has become a reflection of how well these companies position themselves now and in the future with an imaginative long view. Companies must consider the revenue streams in Year 1, Year 5 and Year 10.

 

Global Market For Medical Device Technologies in Spine Surgery, 2014-2021

MedMarket Diligence is completing a global analysis of spine surgery technologies, scheduled for publication in August/September:

Global Market For Medical Device Technologies in Spine Surgery, 2014-2021:
Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World.” See link.

This report is a detailed market and technology assessment and forecast of the products and technologies in the management of diseases and disorders of the spine. The report describes the diseases and disorders of the spine, characterizing the patient populations, their current clinical management, and trends in clinical management as new techniques and technologies are expected to be developed and emerge. The report details the currently available products and technologies, and the manufacturers offering them. The report details the products and technologies under development and markets for each in spine surgery.The report provides a current and forecast to 2021 by region/country of procedures and manufacturer revenues for, specifically, Americas (United States, Rest of North America, Latin America), European Union (United Kingdom, Germany, France, Italy, Spain, Rest of Europe), Asia-Pacific (Japan, China, India, Rest of Asia/Pacific) and Rest of World. The forecast addresses the product- and country-specific impacts in the market of new technologies through the coming decade. The report profiles 75 of the most notable current and emerging companies in this industry, providing data on their current products, current market position and products under development.

See the full description and table of contents at Report #M540.

Medtech succeeds by responding to multiple demands

Medtech is resilient, adapting to the changing demands of patients, payers, regulators, and the economy, but only in the hands of the innovators who keep a finger in the wind on these demands.

  1. Comprehensive outcomes versus symptomatic intervention. Competition in medtech, heightened by cost pressures in particular, is characterized by the demand for comprehensive solutions to disease/trauma rather than technologies that simply ameliorate symptoms. Manufacturers are focusing on longer term solutions, competing against the full spectrum of therapeutic alternatives rather than incremental improvements in their widgets.
  2. Whatever the cost, make it lower. Cost is poorly understood in healthcare (hence the problem!), but it is recognized as important simply by the rate at which premiums increase, the percentage of GDP adding to healthcare spending, the cost of Medicare and other similar benchmarks. Cost is difficult to assess in medical technologies, because there are long term, unforeseen implications of nearly every medtech development. Nonetheless, the manufacturer who does not only bow down in homage to cost but also makes cost at least an implicit part of its value proposition will be quickly put out of business.
  3. The life spans of “gold standards” of treatment are getting shorter and shorter. Technology solutions are being developed, from different scientific disciplines, at such a pace as to quickly establish themselves, in a broad enough consensus, as new gold standards. Physicians are increasingly compelled to accept these new new standards or find their caseload shifting to those who do.
  4. Many manufacturers strive for being able to claim their products are “disruptive” — overturning existing paradigms. However, few medtech manufacturers really ever achieve anything more than marginal improvements. Note the relative amount of 510Ks versus PMAs in regulatory approvals (not that a PMA denotes a “disruptive” development).
  5. Materials technologies are defining what is a “device” as well as what they can accomplish. Competitive manufacturers are aggressively gaining a broad understanding of materials technologies to encompass traditional device, pharma, biopharma, biotech, cell biology and others, ensuring their success from a broadly competitive position.
  6. Interest in startup innovations by VCs and large-cap medtech companies has never been more intense, but funding still demands concrete milestones. Proof-of-concept gets entrepreneurs excited, but 510(K) or better is what gets the money flowing. This is not the credit-crunch of 2008, when the sour economy caused funding to largely dry up. Money is indeed flowing into medtech now, as evidenced by the IPO market and the volume of early stage funding, but potential investments — especially at very early stages — are no less intensively vetted. Startups must therefore carry the risk well into the development timeline, when the prospect of their products reaching the market has been demonstrated far more effectively.
  7. Medtech markets are influenced by many forces, but none more strongly than the drive of companies to succeed. Reimbursement. Regulatory hurdles. Healthcare reform. Cost reduction, even a 2.3% medical device excise tax, et cetera, et cetera. None of these hold sway over innovation and entrepreneurship. And the rate of innovation is accelerating, further insulating medtech against adverse policy decisions. Moreover, that innovation is reaching a sort of critical mass in which the convergence of different scientific disciplines — materials technology, cell biology, biotech, pharma and others — is leading to solutions that stand as formidable buttresses against market limiters.
  8. Information technology is having, and will have, profound effects on medical technology development. The manufacturers who “get” this will always gain an advantage. This happens in ways too numerous to mention in full, but worth noting are: drug and device modeling/testing systems, meta-analysis of clinical research, information technology embedded in implants (“smart” devices), and microprocessor-controlled biofeedback systems (e.g., glucose monitoring and insulin delivery). The information dimension of virtually every medtech innovation must be considered by manufacturers, given its potential to affect the cost/value of those innovations.

This is not a comprehensive list of drivers/limiters in medtech, but these stand behind the success or failure of many, many companies.

Patrick Driscoll is an industry analyst and publisher of content on advanced medtech markets through MedMarket Diligence.

The Five Biggest Medical Technology Forces

There are five fundamental forces driving change in virtually every medical technology market. (There are many other forces, of course, that impact these markets, such as regulation, reimbursement, etc., but here I speak of forces driven by technology and the innovators employing them.) They represent challenges and opportunities — depending merely upon how companies perceive and respond to them.

Devices are no longer devices (only).

An inert medical or plastic device is likely to present little competitive threat. The device that succeeds stretches the boundaries of what a device is. Devices can be:

  • Biocompatible
  • Bioresorbable
  • Bioactive
  • Shape-shifting (e.g., nitinol)
  • Hybridized with drugs, cells, other biologics
  • Integrated with RFIDs and sensors
  • Combinations of the above

Competition comes from all directions. And so does opportunity.

Competition in medical technology has long since been defined by the device, having been replaced by the definition of the specific problem solved. And that problem is the disease state and the costs of managing and/or eliminating it. (An angioplasty catheter’s competition is not just angioplasty catheters, but also drug-eluting and/or bioresorbable coronary stents, drug-coated balloons, atherectomy, minimally invasive coronary artery bypass graft, atherosclerotic plaque-reducing drugs, etc.) Successful innovators consider all possible alternatives to solving the disease state need and define themselves by the solution, not the product. The only limitation a manufacturer has is its willingness to pursue all avenues to solving the problem.

Zero invasiveness.

Any technology that is not focused on the ideal of zero collateral damage, zero complications, and zero adverse side-effects will be threatened by those that do. The advances in materials technologies, medical/surgical techniques and understanding of pathology, among other advances, are sufficient to challenge manufacturers to pursue the goal of zero invasiveness. Just as open surgery has evolved to incisionless surgery, medical technologies increasingly take on the potential to be more like drugs, or better — treating the disease on a one-time basis with no complications whatsoever.

Decentralized, point-of-care technology.

Capital equipment is expensive, big and lethargic. A handheld imaging — ultrasound, even MRI — performed at the patient’s bedside or doctor’s office, offers enormous potential to reduce cost and increase clinical utility. But decentralization is not limited to diagnosis, since treatment is the ultimate goal and its incentives are the same. Of course, the trend moving diagnostics and therapeutics from the centralized to the point-of-care is not a new idea, but the reality is that a whole range of therapeutic devices (e.g., numerous ablation modalities) have been developed that no longer require OR suites, general anesthesia and their associated costs, and imaging systems have been shrinking to the point that words like “handheld” and “MRI” can be used in the same sentence (see Butterfly Network).

Research and development tools eliminate excuses.

R&D is inevitably challenged to evaluate ideas thoroughly, considering difficult to anticipate obstacles and rapidly evaluating ideas to reveal the best prospects and bring them to manufacturing, let alone market. But multiple technologies have been developed and put into use that can accelerate the iterative cycles of development and yield prime product candidates to bring to market — biotech, pharma, biopharm, device, drug/device and others.  Computer modeling of hemodynamic blood flow, computer simulation of drug candidates (hybridized with devices or not), 3D printing (prototypes, custom implants) and many other advances rapidly accelerate and improve the efficiency of product development of products that more perfectly fit the need and eliminate excuses for unforeseen costs and patient complications. R&D is also far more well informed — integrating more complete understanding of systems biology and the consequent downstream benefits and costs of intervening in any particular way. What is left is the ability to more rapidly evaluate and test (more) ideas and bring them to market.

 

The Staying Power of Spine Surgery Markets

While medtech over the past five years has seen continued pressure on prices, increased oversight on physician-manufacturer relationships, reduced med/surg procedure volumes, continued regulatory challenges and the real or perceived negative impacts of the Affordable Care Act, the business of spine surgical technologies remains one of the most steadfast oases of innovation and price stability.

The continued growth of spine surgery owes itself to a number of key drivers:

  • The ageing population worldwide
  • Increasing incidence of obesity
  • A growing middle class in developing countries, with the ability to pay out of pocket for spine surgery
  • Improving worldwide economy
  • Technological device enhancements, leading to improved surgical results
  • Developments in minimally invasive spine surgery (MISS) devices driving a strong increase in MISS, with its numerous advantages
  • In the US, improvements in reimbursement as clinical trials demonstrate the efficacy of treatments using the devices
  • US healthcare reform leading to medical insurance coverage for more people, allowing those suffering from intractable back pain to receive surgical treatment

(The last, of course, is debatable, since medical device manufacturers are not yet convinced that a 3.2% excise tax is supported by the anticipated boost in patient population. The jury is still out on this and, in any case, prospects for the 3.2% tax being repealed are slim, despite repeated efforts.)

Consequently, the worldwide aggregate spine surgery market has a 2012 to 2020 compound growth rate of 7.7%, with individual segments within it growing at a low of 2.3% to a high of 35.0%.

It is also worth noting that we have identified seven (7) new medtech startups (McGinley Orthopaedic Innovations, KB Medical, Trice Orthopedics, Tyber Medical, Direct Spinal Therapeutics, NLT Spine, Osseus Fusion Systems) in spine surgery that have been founded in the past three years alone.

Below is illustrated the spine surgery markets in the Americas and Europe for 2012-2020.

Screen Shot 2014-05-28 at 10.33.52 AMScreen Shot 2014-05-28 at 10.34.10 AM

Source: MedMarket Diligence, LLC; Report #M520, “Worldwide Spine Surgery: Products, Technologies, Markets and Opportunities 2010-2020”.

The drug and device trends in the treatment of obesity

Several events have set the stage for change in the markets for treatment of obesity. Key among them are the 2012 FDA approvals of (link) of Vivus’ Qsymia (combination of phentermine and topiramate) and Arena Pharmaceuticals’ Belviq (lorcaserin).  In a market that has been dominated by surgical procedures and medical devices, the introduction of two significant pharmaceutical options has served notice that pharma is finally seizing hold of this large and growing opportunity.  The potential addition of yet another obesity drug, Orexigen’s Contrave (combination of naltrexone and bupropion), will only hasten this change.

Combine the advent of obesity drugs (whether or not reimbursement is at optimum levels) with the demand-pinching force of a still somewhat hobbled economy and its impact on the significantly out-of-pocket payment for obesity surgery and device procedures and it becomes clear that the market is shifting away from device and toward pharma. Gastric bypass (e.g., Roux en-Y) will hold stronger than device treatments due to lower cost. As a result, the adjustable gastric band, such as Allergan’s Lap-Band, will see a decline in the total share of obesity surgeries.  See the trend in Europe as an example:

Trend in Metabolic/Bariatric Surgery, Europe, 2003-2013

RYGB= Roux-en-Y gastric bypass
AGB=Adjustable gastric band
BPD/DS= Biliopancreatic diversion with duodenal switch
SG=Sleeve gastrectomy

Source: MedMarket Diligence, LLC; Report #S835.

Established obesity devices such as restrictive devices (e.g., Lap-Band and transoral gastropexy) and artificial fullness devices (e.g., gastric balloon) will represent slower growth than malabsorption devices, gastric emptying devices and appetite suppression devices, but which have thus far gained little presence in the market.  By comparison, appetite suppression drugs are already on the market and, with combination drugs taking off quickly, the share of the future market will be increasingly dominated by appetite suppression and combination drugs.

Source: MedMarket Diligence, LLC; Report #S835.

 

The report, “Products, Technologies and Markets Worldwide for the Clinical Management of Obesity, 2011-2019”, may be purchased online at link.

 

 

Allergan Looking to Slim Down

In a move that could be considered ironic, Allergan is looking to shed some excess weight as it looks to sell its Lap-Band business. While Lap-Band initially demonstrated extraordinary growth as the incidence and prevalence of obesity began to skyrocket (along with attention in the press), the product was also tarnished by the aggressive marketing of 1-800-GET-THIN. Lap-Band has also been a victim of the economy because many patients elect to pay for the surgery out of pocket. This is due to the fact that, while third party payers may ultimately be more inclined toward the product’s reimbursement since it may prevent or ameliorate obesity’s co-morbidities (e.g., Type 2 diabetes), current reimbursement levels do not yet reflect this. Allergan now believes that Lap-Band (which only represents only 3% of the company’s revenue) no longer exhibits attractive enough growth.

The future of obesity treatment is forecast in any case to be increasingly divided between devices and drugs.

——————
MedMarket Diligence has completed a global report on the clinical management of obesity. See link.

FDA Throttles Device Approval

The FDA is moving at two speeds in the medical device approval process. On the one hand, the agency is taking a critical look at the 510(k), expedited approval process, which has come under fire for being too lenient. The process will certainly see some change, given the pressure ensuing from high profile device failures and the changing of the guard at the FDA.

On the other hand, the FDA has moved to allow the use of Bayesian statistics that will potentially expedite device approvals by allowing manufacturers to combine trial data in support of device safety and efficacy.  (See link.)

It may be a bit optimistic on the part of industry to hope that Bayesian statistics will fully counter the pending 510(k) process changes, but the healthcare industry will take any good news it can.