Technologies in Development at Medtech Startups, November 2015

Below is a list of the technologies under development at new medtech companies and recently added to the Medtech Startups Database.

  • Devices to assist pulmonary function.
  • Technologies to improve performance of orthopedic implantation.
  • Treatments for conditions associated with spinal cord injury and disease.
  • Technologies for the preservation and transport of organs and biologicals.
  • Interventional technologies for the treatment of neurovascular technologies.
  • Spinal fusion technologies
  • Orthopedic implants, including a prosthetic meniscus for placement in the knee joint.
  • Women’s health products including low risk device to measure cervical dilation.
  • Medical device to rapidly and accurately diagnose otitis media.
  • Bioabsorbable heart valve.
  • Electro-hydraulic generated shockwave for cosmetic, medical applications.

For a historical listing of technologies at medtech startups, see link.

 

Sutures, Staples and Other Fading Technologies

See Report #S192, “Worldwide Surgical Sealants, Glues, and Wound Closure Markets, 2013-2018”. (Note: This report has been superceded by the August 2016 Report #S290.)

Sutures have been in use for potentially thousands of years, and staples for the last several decades. Both have been frequently been the target of new development in wound closure and management, with competition in the form of advanced wound closure, whether surgical sealants, glues, hemostats, and even other mechanical wound closure. Novel wound closure technologies have decidedly gained enough credibility in clinical practice to displace volume in sutures and staples.

Sutures and Staples Are Not Fading…

Manufacturers of sutures and staples have not sat idly and watched their share erode. Indeed, the development of bioresorbable sutures and other novel suture types, the development of sophisticated stapling and suturing endoscopic instrumentation and other developments have begun to erode the share loss. Consequently, the shift “away” from sutures and staples has ebbed, such that the aggregate swing in market shares is no more than 3% compared to the swing projected three years ago of nearly 7% (see link).

Sutures and Staples in Wound Closure (excerpt from Report #S192)

The vast majority of sutures, staples, and endostaples are used to close procedures involving acute surgical wounds. Typically, chronic wounds do not involve the use of sutures and staple products unless some degree of surgical intervention is employed to remove necrotic tissue or to create a new acute wound bed to aid healing.

Sutures are classified as absorbable or non-absorbable; monofilament, multifilament or braided; and natural or synthetic. Absorbable or non-absorbable describes the suture’s effective life within tissue. Absorbable sutures lose the majority of their tensile strength within 60 days after use. Non-absorbable sutures are resistant to living tissue and do not break down. Monofilament, multifilament, and braided describe the structure or configuration of the suture based on the number of strands used to manufacture the product. Natural or synthetic refers to the origin of the suture. Natural suture materials include surgical gut, chromic gut, catgut and silk. Catgut is made from the natural collagen fibers found in the intestine of sheep, goats, cattle, hogs and horses. (It was never made from the gut of cats.) It is debatable whether catgut should continue to be used for suturing wounds, since cotton is cheaper and cotton or synthetic threads are less likely to cause infection. Synthetic suture materials include nylon, polyester, stainless steel, polypropylene, polyglycolic acid (PGA), polyglycolide-co-caprolactone (PGCL), and polydioxanone.

Suture products consist of two component parts, the needle and the suture. These can be found in a wide range of sizes and types, made of a range of materials, and the method of attachment of the suture to the needle can involve a variety of methods. Sutures are divided into braided and monofilament categories. Braided sutures are typically more pliable than monofilament and exhibit better knot security. Monofilament sutures are wirier and may require a more secure knot; however, they cause less tissue drag than braided sutures, a characteristic that is especially important in cardiovascular, ophthalmic and neurological surgery

Stapler devices are an evolution of suture technology. The goal of stapler products is to avoid infection and make the wound closure procedure easier and faster.  Staples are made of stainless steel and biomaterials and are used to join internal tissues, reconstruct or seal off organs, remove diseased tissue, occlude blood vessels, and close skin incisions and lacerations. They are primarily used during surgery as internal and/or external closure devices.

Staples are available in an assortment of sizes and features and stapler devices have been developed for specific procedures as well as for multiple uses.

Internal staplers are used to approximate (or close) internal tissues and organs. The devices may be reusable or disposable. Some disposable staplers may be reloaded several times during the course of a single patient surgical procedure, before being discarded.

The most recent internal staplers are used to perform minimally invasive surgical procedures. These allow the surgeon to endoscopically secure internal wounds instead of having to operate through an open procedure. Moreover, internal biodegradable staples obviate the need for staple removal. Such staples are ideally suited to laparoscopic surgery and are delivered via procedure-specific laparoscopic instruments. However, most staples are still made of stainless steel and when used for internal stapling procedures, whether open or laparoscopic, are not removed after healing. Skin staples are removed after the incision is healed.

Probably the major benefit of staples is that they can be applied more rapidly than sutures and can be placed precisely without requiring the skill necessary for suturing. This also means increased safety for the patient, and patients can often be discharged more rapidly if procedures are stapled rather than sutured.

While cosmetically acceptable results are usually obtained, staplers normally are not used in highly visible areas such as the face. Here, surgeons will still close by hand to minimize any scarring. In many skin closure procedures, sutures have begun to be replaced by cyanoacrylate glues. However, the ideal alternative to suturing has not yet been developed; for example, cyanoacrylate glues used for external skin closure are only one-fifth as strong as sutures.

European market share analysis, interbody fusion devices, 2014

Screen Shot 2015-11-23 at 11.01.03 AM

Source: MedMarket Diligence, LLC; “Global Market for Medical Device Technologies in Spine Surgery, 2014-2021: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World” (Report #M540).

Growth in Treatment of Acute Stroke

Drawn from Report #C310, “Emerging Global Market for Neurointerventional Technologies in Stroke, 2014-2019”, published by MedMarket Diligence, LLC.

Therapeutic management of stroke encompasses a broad scope of prophylactic, palliative and curative treatment modalities that are typically employed in some combinations during the preventive, acute and rehabilitation phases of stroke-related care delivery.

Historically, prevention has been universally regarded as the best form of medicine for dealing with any disease. This old wisdom is especially true in management of acute stroke, which represents a catastrophic event with a largely predetermined clinical progression and outcome that stem from the patient’s preexisting pathologies and can be only marginally altered with available emergent therapies.

The commonly accepted, current strategy of primary and secondary stroke prevention is focused on elimination or remedying of the modifiable risk factors that have been shown to create a general predisposition or directly contribute to the onset of acute cerebral ischemia or/and hemorrhage.

Within the context of general population, this strategy is targeting alleviation of certain lifestyle risk factors (such as smoking, obesity, physical inactivity, excessive alcohol consumption, drug abuse, high-fat diet etc.), which could contribute to the development of cardiovascular and other pathologies associated with increased propensity to stroke.

In patient caseloads with preexisting medical conditions (AFib, mechanical prosthetic valves, recent AMI, stoke or TIA, hypertension, diabetes, etc.) which are characterized by a high risk of adverse vascular events potentially leading to stroke, preventive strategy is focused on reducing such risks via a strict control and monitoring of corresponding hemostatic and hemodynamic parameters.

Finally, in persons with diagnosed cerebrovascular pathologies (high grade carotid stenosis, intracranial aneurysms and AVMs) the first line preventive therapy involves their repair or eradication, when technically possible.

The scope of FDA-approved medical and interventional modalities commonly employed in preventive management of stroke includes oral anticoagulation, antiplatelet, and lipid-lowering drug therapies, cerebral aneurysm and AVM repair surgery, carotid endarterectomy, stereotactic radiosurgery, as well as endovascular embolization of intracranial aneurysms and AVMs, carotid artery stenting with embolic protection, left atrial appendage closure, along with  rarely used and likely to be abandoned intracranial stenting.

In contrast to causes-oriented therapies used in stroke prevention, therapeutic modalities employed in the emergent management of acute stroke are focused almost exclusively on patients’ cardiopulmonary and hemodynamic support and ad hoc containment of dangerous complications and corresponding brain damage associated with stroke.

Among the life-threatening complications that commonly accompany acute cerebral hemorrhage or ischemia are cerebral edema; hydrocephalus; brain stem compression; vasospasm and pulmonary embolism.

Management of the aforementioned acute complications relies on a few proven treatment regimens, including (but not limited to):

  • medical therapy and catheter-based ventricular drainage of cerebrospinal fluid to control intracerebral pressure in patients at risk of edema, hydrocephalus or brain stem compression;
  • hypertensive hypervolemic hemodilution (or “triple-H” therapy) to treat ischemic neurological deficit from vasospasm following subarachnoid hemorrhage;
  • subcutaneous anticoagulation (with heparins or heparinoids) for prophylaxis of pulmonary embolism (which accounts for approximately 10% of deaths following stroke); and
  • elective hypothermia for temporary salvaging brain cells from necrosis due to hemorrhagic trauma or acute ischemia (although the latter technique has not been proven efficacious in clinical trials and was not endorsed in the latest, 2007 versions of the AHA hemorrhagic and ischemic stroke guidelines).

The currently available curative treatment options for acute stroke are limited to intravenous t-PA therapy (which has about 30% efficacy and is indicated for a very narrow cohort of eligible ischemic stroke patients only), investigational intra-arterial thrombolytic therapy, transcatheter cerebral thrombectomy (in patients who did not qualify for or failed t-PA therapy), and emergency craniotomy-based or endoscopic removal of stroke-related hematoma (which carries a 50% to 80% risk of mortality and is reserved for rapidly deteriorating young patients with large lobar hemorrhages).

Rehabilitation phase of stroke management relies on general physiotherapeutic techniques commonly used in patients with various physical and neurological disabilities. Prophylactics of recurrent cerebrovascular events in stroke survivors employs medical and interventional regimens referred to in the overview of primary and secondary stroke prevention.


Drawn from Report #C310, “Emerging Global Market for Neurointerventional Technologies in Stroke, 2014-2019”, published by MedMarket Diligence, LLC.

 

White Paper: Lasers and electrosurgery sees sales grow by $96 million and $199 million respectively

Ablation is not a new technology, nor is it a recent addition to the tools available to clinicians (electrosurgery dates back a hundred years or more), but is still evolving in both the practice of medicine and surgery and the medtech industry. New technology developments, changes in clinical practice and growth and migration of the technologies globally are characteristics of ablation as a worldwide market with significant change and opportunity.

New ablation technologies have arisen at different times over the past 50 years, accentuated by the emergence of sophisticated instrumentation and devices designed to very precisely apply their inherent energy toward specific clinical applications. This has been and will continue to be a pattern in the ablation market, as manufacturers develop new instruments and methods to refine the delivery of ablation toward specific clinical applications. Consequently, revenues will continue to shift from one modality to another in the pursuit of improved clinical outcomes.

Download a White Paper on tissue ablation at link.

See “The Future of Tissue Ablation Products to 2020″ at link.

Fundings in Medtech, November 2015

Fundings in medical technology now stand at $537.9 million, led by the $75 million IPOs filed by both SurgiQuest and Ellipse Technologies,, the $57 million funding of Fractyl Labs, $39.2 million debt funding of SI-BONE, the $36.5 million funding of BAROnova, the$35 million funding of Signostics, and the $32 million funding of Avedro.

Below are the top fundings for the month of November 2015 thus far. (Revisit this post and refresh your browser to see updates during the month.)

See link for the complete list of medtech fundings in November 2015.

To see a historical listing of fundings since 2009, see link.

 

Coronary Stent takes largest total market share to 59.6%

The global trend is for a continued decrease in the number of CABG procedures and an increase in the number of percutaneous coronary intervention procedures. Typically about 90% of all percutaneous coronary intervention procedures use a coronary stent in the developed economies with approximately 75% of all procedures that use stents do so with drug-eluting stents (DES) and this percentage continues to increase.

For the vast majority of cases of coronary artery disease, the treatment options are typically limited to angioplasty alone or with stents or coronary artery bypass grafting. Aside from the advent of new device and equipment technologies to perform coronary artery bypass via catheter or otherwise in minimally invasive formats (such as minimally invasive direct coronary artery bypass, or MIDCAB), the market for the treatment of coronary artery bypass is largely represented by interventional cardiology, comprised of the following products:

  • Global sales of coronary guide wires, balloon dilatation catheters, guiding catheters and accessories
  • Stents
  • Vascular closure devices

See the White Paper on Coronary Stents (see the “DOWNLOAD” button) and the associated report, “The Future of Coronary Artery Disease Medical Devices to 2021“, published by Smithers Apex.

Bioactive and Synthetic Sealants in Wound Closure

The following is excerpted from sections of Report #S192, “Worldwide Surgical Sealants, Glues, and Wound Closure Markets, 2013-2018”, published by MedMarket Diligence, LLC.

Sealants and glues in wound closure may be comprised of naturally-occurring (bioactive) ingredients (including from human or animal) or may be synthetic in origin. Many bioactives are comprised primarily of fibrin sealant, give its evolutionary design in stopping bleeding and sealing wounds. Bioactive sealants offer the benefit of well documented performance with lack of toxicity, but with the existing sealants on the market, the strength of the closure provided falls somewhat short of what is needed for sealants to be used autonomously in all but the least challenging closure conditions. For this reason, a wide range of other biologically active agents with higher sealant strength are in various phases of evaluation (See “Gecko feet, mussel shells and other sticky things” at link).

Bioactive sealants that on the market and in development are detailed at link.

Compared to biologically active sealants containing fibrin and other human- or animal-derived products, synthetic sealants represent a much larger segment of the sealant market in terms of the number of competitors, variety of products, and next-generation products in development. Non-active synthetic sealants do not contain ingredients such as fibrin that actively mediate the blood clotting cascade, rather they act as mechanical hemostats, binding with or adhering to the tissues to help stop or prevent active bleeding during surgery.

Synthetic sealants that are on the market and in development are detailed at link.

Below is the global surgical wound closure products market.

Surgical Wound Closure Products Market, by Device Segment

 

Source: MedMarket Diligence, LLC; Report #S192.

Acute Stroke Treatment, Trends to 2019

See also “Guidelines Urge New Approach to Treating Worst Strokes” (American Heart Association). 

Therapeutic management of stroke encompasses a broad scope of prophylactic, palliative and curative treatment modalities that are typically employed in some combinations during the preventive, acute and rehabilitation phases of stroke-related care delivery.

Historically, prevention has been universally regarded as the best form of medicine for dealing with any disease. This old wisdom is especially true in management of acute stroke, which represents a catastrophic event with a largely predetermined clinical progression and outcome that stem from the patient’s preexisting pathologies and can be only marginally altered with available emergent therapies.

Presently, the commonly accepted strategy of primary and secondary stroke prevention is focused on elimination or remedying of the modifiable risk factors that have been shown to create a general predisposition or directly contribute to the onset of acute cerebral ischemia or/and hemorrhage.

Within the context of general population, this strategy is targeting alleviation of certain lifestyle risk factors (such as smoking, obesity, physical inactivity, excessive alcohol consumption, drug abuse, high-fat diet etc.), which could contribute to the development of cardiovascular and other pathologies associated with increased propensity to stroke.

In patient caseloads with preexisting medical conditions (AFib, mechanical prosthetic valves, recent AMI, stoke or TIA, hypertension, diabetes, etc.) which are characterized by a high risk of adverse vascular events potentially leading to stroke, preventive strategy is focused on reducing such risks via a strict control and monitoring of corresponding hemostatic and hemodynamic parameters.

Finally, in persons with diagnosed cerebrovascular pathologies (high grade carotid stenosis, intracranial aneurysms and AVMs) the first line preventive therapy involves their repair or eradication, when technically possible.

The scope of FDA-approved medical and interventional modalities commonly employed in preventive management of stroke includes oral anticoagulation, antiplatelet, and lipid-lowering drug therapies, cerebral aneurysm and AVM repair surgery, carotid endarterectomy, stereotactic radiosurgery, as well as endovascular embolization of intracranial aneurysms and AVMs, carotid artery stenting with embolic protection, left atrial appendage closure, along with  rarely used and likely to be abandoned intracranial stenting.

Global Projected Dynamics of Cerebral Endovascular Embolization Procedures 2013-2019 (#000)

Source: MedMarket Diligence, LLC; Report #C310, “Emerging Global Market for Neurointerventional Technologies in Stroke, 2014-2019.”

In contrast to causes-oriented therapies used in stroke prevention, therapeutic modalities employed in the emergent management of acute stroke are focused almost exclusively on patients’ cardiopulmonary and hemodynamic support and ad hoc containment of dangerous complications and corresponding brain damage associated with stroke.

Global trends in spine surgery, 2015 to 2021

The global spine surgery market, which is largely stable in terms of technologies and the dominance of the U.S. market, will demonstrate the most significant change through 2021 through an increasing share of spine surgeries done minimally invasively and a noticeable shift of sales to OUS, especially to China, Japan, and India.

See the relative growth from 2015 to 2021 in the charts below (the proprietary data in axes values omitted, but the sales for North America and Asia-Pacific are presented on the same vertical scale for comparison purposes).

Source: MedMarket Diligence, LLC; Report #M540.