Wound closure and healing via sealants, glues, hemostats in development

Natural tissue healing is a highly complex dance of processes that need to be working properly in order for the body to heal. Mammals have developed the ability to heal wounds rapidly through a cascade of processes that starts with hemostasis (blood clotting) to slow or stop the loss of blood. From the moment of injury, platelets start to aggregate, as well as starting to release cytokines, chemokines and hormones. Vasoconstriction takes place as the body tries to limit the loss of blood, and several vasoactive mediators come into play, including, norepinephrine, epinephrine, prostaglandins, serotonin, and thromboxane. Activated platelets lead to formation of a clot. Next, the inflammatory steps kick in, targeting and killing microbes and launching a natural internal debridement process, which serves to clean up any damaged tissue so that reconstruction may occur. Last in the cascade are the proliferative and maturation phases. These involve the deposition of new tissue matrix materials, and are intended to lead to reconstruction of tissue organelles and cellular structure. These healing steps actually overlap one another, and do not have strict times when each process begins or ends.

A delicate physiological balance must be maintained during the healing process to ensure timely repair or regeneration of damaged tissue. Wounds may fail to heal or have a greatly increased healing time when unfavorable conditions are allowed to persist. An optimal environment must be provided to support the essential biochemical and cellular activities required for efficient wound healing and to remove or protect the wound from factors that impede the healing process.

Factors affecting wound healing may be considered in one of two categories depending on their source. Extrinsic factors impinge on the patient from the external environment, whereas intrinsic factors directly affect the performance of bodily functions through the patient’s own physiology or condition. Factors which strongly affect wound healing include smoking, diabetes, age, oxygenation, stress, obesity, certain medications, alcoholism and nutrition.

Timescales for Development of
Sealants, Glues and Hemostat Products

screen-shot-2016-10-31-at-2-55-14-pm

Source: MedMarket Diligence, LLC; Report #S290.

While product development continues apace, and companies are launching their products in new countries, launches of actual new products has been relatively slow. This is due most likely to the highly technical (read: expensive) nature of the product development, as well as the cost and time involved in running clinical trials, and the strong patent protection which has been erected, especially by the leading companies. The need for the products is there, but the required clinical testing is putting a brake on the markets.

In July 2015, HyperBranch announced the product launch of Adherus® AutoSpray Dural Sealant in the US. FDA clearance to market the product was obtained in March 2015. The absorbable sealant is intended for use in brain surgery and is applied over the sutures for dura repair to prevent cerebrospinal fluid from leaking out of the incision site. The Adherus® AutoSpray Dural Sealant is made of two solutions: a PEG ester solution and a polyethylenimine (PEI) solution. When mixed together, the solutions combine to form a sealant gel that is applied to the incision site. According to the company, the sealant is fully absorbed in about 90 days.

Cohera Medical launched its TissuGlu® in select US cities in November 2015. At this point, TissuGlu® is available in ten cities in the USA, while B. Braun is the distributor for the product in Germany, Spain and Portugal.

Sanyo Chemical launched its first medical device, Hydrofit, in February 2014. The company obtained the approval of the medical device under the Pharmaceutical Affairs Law in December 2011, filing it as a novel surgical hemostatic agent intended for anastomosing the arterial blood and artificial blood vessel in surgical procedures. According to the company, the product will be produced by Sanyo and marketed by Terumo.

In 2014, Cohera Medical, Inc. launched Sylys Surgical Sealant, which can be used in gastrointestinal surgery to decrease anastomotic leak. In the same year, Baxter also gained the FDA permission for Tisseel® fibrin sealant, which, according to the company, is used in almost all types of surgical procedures.

Mallinckrodt will invest in the commercial launch and ongoing market development of both PreveLeak and Raplixa in FY 2016. According to the company, both products are faster to prepare and easier to use and store than competing products. PreveLeak, a surgical sealant, is allegedly more flexible than hemostasis glue products. It is indicated for use in vascular reconstructions to achieve adjunctive hemostasis by sealing areas of leakage. PreveLeak is currently marketed in Europe through distributors.

In an example of a delayed launch, CryoLife has been working towards launch of PerClot in the US, but ran into litigation trouble with Medafor, a wholly-owned subsidiary of CR Bard. In November 2015, CryoLife announced that it had entered into a resolution with Medafor to end the patent dispute in the US District Court for the District of Delaware between the companies regarding PerClot. Under terms of the resolution, all parties agreed to end the litigation, jointly dismissing all claims and counterclaims with prejudice and waiving all appeal rights in this case.  Each party is to pay its own attorneys’ fees and costs associated with the litigation.  However, the court’s preliminary injunction entered March 31, 2015 with respect to CryoLife’s marketing and sale of PerClot in the US will remain in effect until the expiration of Medafor’s US Patent No. 6,060,461 (the “‘461 Patent”) on February 8, 2019. CryoLife management says that this will not upset their plans, as CryoLife does not expect to receive FDA market approval for PerClot before 2018, if then.


From “Sealants, Glues, Hemostats to 2022” (#S290).

Six Key Trends in Sealants, Glues, Hemostats Markets to 2022

From July 2016 published Report #S290.

Here are six key trends we see in the global market for surgical sealants, glues, and hemostats:

  1. Aggressive development of products (including by universities, startups, established competitors), regulatory approvals, and new product introductions continues in the U.S., Europe, and Asia/Pacific (mostly Japan, Korea) to satisfy the growing volume of surgical procedures globally.
  2. Rapid adoption of sealants, glues, hemostats in China will drive much of the global market for these products, but other nations in the region are also big consumers, with more of the potential caseload already tapped than the rising economic China giant. Japan is a big developer and user of wound product consumer. Per capital demand is also higher in some countries like Japan.
  3. Flattening markets in the U.S. and Europe (where home-based manufacturers are looking more at emerging markets), with Europe in particular focused intently on lowering healthcare costs.
  4. The M&A, and deal-making that has taken place over the past few years (Bristol-Myers Squibb, The Medicines Company, Cohera Medical, Medafor, CR Bard, Tenaxis, Mallinckrodt, Xcede Technologies, etc.) will continue as market penetration turns to consolidation.
  5. Growing development on two fronts: (1) clinical specialty and/or application specific product formulation, and (2) all purpose products that provide faster sealing, hemostasis, or closure for general wound applications for internal and external use.
  6. Bioglues already hold the lead in global medical glue sales, and more are being developed, but there are also numerous biologically-inspired, though not -derived, glues in the starting blocks that will displace bioglue shares. Nanotech also has its tiny fingers in this pie, as well.

See Report #S290, “Worldwide Sealants, Glues, and Hemostats Markets, 2015-2022”.

The Demand for Sealants, Glues, and Hemostats in 2016

The following is drawn from “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.” Report #S290.

The need for surgical sealants, glues and hemostats is directly related to the clinical caseload and procedure volumes, as well as to the adoption of these products for multiple uses, such as the use of one product for sealing, hemostasis and anti-adhesion. It is fair to say that use of these products has become routine in the surgical suite and in other clinical locations. Procedure volumes are in turn driven by demographic forces, including global aging populations, while regulatory changes will continue to influence uptake of these products.

wound-prevalance

Source: MedMarket Diligence, LLC; Report #S290.

Medical Sealants

Fibrin sealants are made of a combination of thrombin and fibrinogen. These sealants may be sprayed on the bleeding surface, or applied using a patch. Surgical sealants might be made of glutaraldehyde and bovine serum albumin, polyethylene glycol polymers, and cyanoacrylates.

Sealants are most often used to stop bleeding over a large area. If the surgeon wishes to fasten down a flap without using sutures, or in addition to using sutures, then the product used is usually a medical glue.

Hemostatic Products

The surgeon and the perioperative nurse have a variety of hemostats from which to choose, as they are not all alike in their applications and efficacy. Selection of the most appropriate hemostat requires training and experience, and can affect the clinical outcome, as well as decrease treatment costs. Some of the factors that enter into the decision-making process include the size of the wound, the amount of hemorrhaging, potential adverse effects, whether the procedure is MIS or open surgery, and others.

Active hemostats contain thrombin products which may be derived from several sources, such as bovine pooled plasma purification, human pooled plasma purification, or through human recombinant manufacturing processes. Flowable-type hemostats are made of a granular bovine or porcine gelatin that is combined with saline or reconstituted thrombin, forming a flowable putty that may be applied to the bleeding area.

Medical Glues

Sealants and glues are terms which are often used interchangeably, which can be confusing. In this report, a medical glue is defined as a product used to bond two surfaces together securely. Surgeons are increasingly reaching for medical glues to either help secure a suture line, or to replace sutures entirely in the repair of soft tissues. Medical glues are also utilized in repairing bone fractures, especially for highly comminuted fractures that often involve many small fragments. This helps to spread out the force-bearing surface, rather than focusing weight-bearing on spots where a pin has been inserted.

Thus, the surgeon has a fairly wide array of products from which to choose. The choice of which surgical hemostat or sealant to use depends on several factors, including the procedure being conducted, the type of bleeding, severity of the hemorrhage, the surgeon’s experience with the products, the surgeon’s preference, the price of the product and availability at the time of surgery. For example, a product which has a long shelf life and does not require refrigeration or other special storage, and which requires no special preparation, usually holds advantages over a product which must be mixed before use, or held in a refrigerator during storage, then allowed to warm up to room temperature before use.

 

Sealant, Glues, Hemostat Sales to Surge in Asia-Pacific

Growth in Asia-Pacific sales of sealants, glues, and hemostats will outstrip growth in the larger U.S. market.

Screen Shot 2016-07-25 at 2.00.48 PM

Source: MedMarket Diligence, LLC; Report #S290.

To request a set of report excerpts, click here.

Recent Merger and Acquisition Activity in Sealants, Glues and Hemostats

Growth in sealants, glues, and hemostats markets has been strong enough for long enough to have attracted a lot of players. With growth slowing as the untapped potential is reducing more rapidly, consolidation has now appeared in the natural order of things.

Recent Merger and Acquisition Activity in Sealants, Glues and Hemostats

Original Company/ ProductAcquiring or Collaborating CompanyDate of Acquisition/Collaboration DealFinancial Details (where revealed)
Bristol-Myers Squibb/ Recothrom¨ Thrombin topical hemostatThe Medicines Company2012/2014$105 million collaboration fee
Cohera Medical/TissuGlu¨Collaboration with B. Braun Surgical S.A. to distribute in Germany, Spain and Portugal.Jan. 2015B. Braun Surgical S.A. will exclusively market and sell TissuGlu in the territories of Germany, Spain and Portugal through its existing Closure Technologies commercial teams.
Profibrix/ FibroCapsThe Medicines Company2013$90 million, with $140 million contingent upon milestones
Medafor/Arista¨ AH Absorbable Hemostatic ParticlesCR Bard (Bard Davol)2013$200 million upfront payment
Tenaxis Medical, with ArterX (among other products)The Medicines Company2014$58 million in upfront payments
The Medicines Company/ PreveLeakª (formerly known as ArterX), Raplixaª(formerly known as FibroCaps) fibrin sealant, Recothrom¨ Thrombin topical (Recombinant) sealantMallinckrodt plc2016The entire deal has a potential value of $410 million.
Xcede Technologies, Inc./Resorbable Hemostatic PatchCollaboration with Cook BiotechJan-16Signed three collaboration agreements with Cook Biotech, including a Development Agreement, a License Agreement and a Supply Agreement to complete development, seek regulatory clearance and produce XcedeÕs resorbable hemostatic patch.

Source: MedMarket Diligence, LLC; Report #S290.

To request a set of report excerpts, click here.

Sealants, Glues, Hemostats to 2022

 

Below is our bubble chart giving the segment size (bubble size and horizontal axis position) and growth (vertical axis position) of the products detailed in our 2014 report #S192.

Source: MedMarket Diligence, LLC; Report #S192 (published Oct. 2014)

Given the interest by companies actively involved in sealants, glues, and hemostats, we are publishing Report #S290 (June 2016), “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.”

From Skitch

Sealants, hemostats, glues — future markets foreseen

From our past coverage of surgical sealants, glues, hemostats in our 2014 Report #S192.  (See the forthcoming June 2016 report, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022”, Report #S290.)

Fibrin and synthetic sealants offer a significant advantage over pure hemostats because they do not rely on the full complement of blood factors to produce hemostasis. Sealants provide all the components necessary to prevent bleeding and will often prevent bleeding from tissues where blood flow is under pressure and the damage is extensive.

CryoLife
Source: CryoLife

These products have the potential to replace sutures in some cases where speed and strength of securement are priorities for the surgical procedure.

Biologically active sealants typically contain various formulations of fibrin and/or thrombin, either of human or animal origin, which mimic or facilitate the final stages of the coagulation cascade. The most common consist of a liquid fibrin sealant product in which fibrinogen and thrombin are stored separately as a frozen liquid or lyophilized powder. Before use, both components need to be reconstituted or thawed and loaded into a two-compartment applicator device that allows mixing of the two components just prior to delivery to the wound. Because of the laborious preparation process, these products are not easy to use. However, manufacturers have been developing some new formulations designed to make the process more user friendly. Leaders in biologic surgical sealant space include Baxter International and Johnson & Johnson’s Ethicon Biosurgery division, but there are a number of smaller suppliers as well, in what has become an increasingly crowded field.

Compared to biologically active sealants containing fibrin and other human- or animal-derived products, synthetic sealants represent a much larger segment of the sealant market in terms of the number of competitors, variety of products, and next-generation products in development. Non-active synthetic sealants do not contain ingredients such as fibrin that actively mediate the blood clotting cascade, rather they act as mechanical hemostats, binding with or adhering to the tissues to help stop or prevent active bleeding during surgery.

Synthetic sealants represent an active category for R&D investment in large part because they offer several advantages over fibrin-based and other biologically active sealants. First and foremost, they are not derived from animal or human donor sources and thus eliminate the risks of disease transmission. Moreover, they are typically easier to use than biological products, often requiring no mixing or special storage, and many of these products have demonstrated improved sealing strength versus their biological counterparts. Synthetic products also have the potential to be more cost-effective than their biologically active counterparts. Leaders in the synthetic surgical sealants space include Baxter International Inc., CryoLife, CR Bard, and Ethicon/J&J; however, there are many up-and-coming competitors operating in this segment of the market with some interesting next-generation technologies that could gain significant traction in the years ahead. Moreover, unlike the fibrin sealants segment, where most products have more general indications for surgical hemostasis, a good number of competitors in the synthetic sealant field are focused on specific clinical applications for their products, such as cardiovascular surgery, plastic surgery, or ophthalmic surgery.

Sealants-Hemostats-Glues-companies-by-type
Source: Report #S192 (pub. 2014)

The non-active hemostats segment of the market includes a variety of scaffolds, patches, sponges, putties, powders, and matrices made of various nonactive materials that act mechanically to stop/absorb active bleeding, often in conjunction with manual compression, during surgical procedures as well as emergency use. Many of the companies active in the first two market segments discussed above also participate in this sector, including Ethicon/J&J, CR Bard, Baxter, and CryoLife, but there are also many other companies that compete in the hemostats market worldwide.


MedMarket Diligence is completing a global analysis of medical and surgical sealants, glues, and hemostats to reveal the patterns of sales, product adoption rates, and the realized/unrealized opportunities for extant stakeholders inclusive of manufacturers, buyers, and the investment arena. Publishing in June 2016, Report #S290, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022”.

 

Hemostat products and companies

[exp date=”28/02/13″]Until February, 28, 2013, save 50% on Report #S190 “Worldwide Surgical Sealants, Glues, Wound Closure and Anti-Adhesion” online and, at checkout, enter the coupon code 1361569280 to apply the discount.[/exp]

Hemostats have been used for over a hundred years to prevent bleeding in the surgical situation. Primarily these products were first introduced to prevent hematomas during surgery with the aim of preventing resultant infections. During the 1980s and 1990s, the popularity of hemostats increased rapidly as surgeons tried to avoid excessive use of blood transfusions for reasons of economy and the threat of disease transmission. Products were launched during this period by many of the large medical device manufacturers, such as Johnson & Johnson, which now sells Surgicel (an oxidized regenerated cellulose hemostat), Instat (a freeze-dried collagen product), and Spongostan/Surgifoam (a freeze-dried gelatin hemostat). For stopping bleeding, modern hemostats go far beyond simple gauze.

Almost all hemostatic agents work in conjunction with or in addition to the body’s own blood clotting activity. These agents generally work by physically obstructing the outflow of blood in the wound, accelerating clotting reactions, and providing a matrix for increased platelet interactions, resulting in faster and stronger fibrin clot formation that can bind to and seal vascular injuries. However, the effective hemostatic action of these products depends heavily on the patient having a capable and intact coagulation function. This may not be the case if the patient has received, for example, a synthetic colloid fluid in the field to prevent shock, which results in hemodilution, or if the patient is hypothermic or in hypovolemic shock. If there is pre-existing coagulation deficiency, then many of these hemostats will not work. There is a need for a hemostatic agent that can function effectively in the absence of the patient’s coagulation function. One of the products that function well in these situations is the fibrinogen-based dressing.

Fibrin sealants can also act as hemostatic agents, so there is in effect some overlap between the ‘Fibrin and Other Sealants’ and the ‘Hemostats’ categories. However, at upwards of $600 per use, fibrin sealants are rather too expensive to use as hemostats. There are over 40 active companies market and/or developing hemostat products and many of them have multiple types of hemostats based on the constituent active ingredients.  Below is illustrated the number of active hemostat companies based on the product types they are pursuing or selling.

Source: MedMarket Diligence, LLC, Report #S190.

Posted via email from medmarket’s posterous

Opportunities for med/surg sealants, glues, hemostats driven by type of clinical benefit, competition

Advanced products for the closure, sealing, hemostasis and other endpoints for medical and surgical wounds generate varying degrees of clinical benefit based on the manner and extent to which they enable management of different wound types.  Degrees range from the acute need end of “important and enabling” to the less clinically necessary “aesthetic and perceived benefits”:

  • Important and enabling: Important to prevent excessive bleeding and transfusion, to ensure safe procedure, and to avoid mortality and to avoid complications associated with excessive bleeding and loss of blood.
  • Improved clinical outcome: Reduces morbidity due to improved procedure, reduced surgery time, and prevention of complications such as fibrosis, post-surgical adhesion formation, and infection (includes adjunct to minimally invasive surgery).
  • Cost-effective and time-saving: Immediate reduction in surgical treatment time and follow-up treatments.
  • Aesthetic and perceived benefits: Selection is driven by aesthetic and perceived benefits, resulting in one product being favored over a number of medically equivalent treatments.

These benefits are clearly different on a clinical specialty-by-specialty basis.  The numbers of targeted or prospective procedures also vary considerably by specialty. As a result, wound closure and securement products have the following categorized potential use worldwide:

Source: “Surgical Procedures with Potential for the Use of Hemostats, Sealants, Glues and Adhesion Prevention Products, Worldwide “; Report #S190.


Worldwide Surgical Sealants, Glues, Wound Closure and Anti-Adhesion Markets, 2010-2017

This report details the complete range of sealants & glues technologies used in traumatic, surgical and other wound closure, including tapes, sutures, staples, mechanical closure, hemostats, fibrin sealants/glues and medical adhesives and anti-adhesion products. The report details current clinical and technology developments, with data on products in development (detailing market status) and on the market; market size and forecast; competitor market shares; competitor profiles; and market opportunity. The report provides full year actual data from 2011. The report provides a worldwide forecast to 2017 of the markets for these technologies, with emphasis on the market impact of new technologies through the forecast period. The report provides specific forecasts and shares of the worldwide market by segment for Americas (detail for U.S., Rest of North America and Latin America), Europe (detail for United Kingdom, German, France, Italy, Spain, Rest of Europe), Asia/Pacific (detail for Japan, Korea, Rest of Asia/Pacific) and Rest of World.

The report provides background data on the surgical, disease and traumatic wound patient populations targeted by current technologies and those under development, and the current clinical practices in the management of these patients, including the dynamics among the various clinical specialties or subspecialties vying for patient population and facilitating or limiting the growth of technologies. The report establish the current worldwide market size for major technology segments as a baseline for and projecting growth in the market through 2017. The report assesses and projects the composition of the market as technologies gain or lose relative market performance over this period. The report profiles 122 active companies in this industry, providing data on their current products, current market position and products under development.

The report's complete description, table of contents, and list of exhibits is at link.  The report is available for purchase and immediate download at link.