Medical, Surgical Sealants — Fibrin and Others

screen-shot-2016-10-26-at-2-23-29-pmFibrin is the result of the combination of solutions of thrombin and fibrinogen. This forms a clot just as in the body during the coagulation cascade. The thrombin then breaks the fibrinogen molecules into smaller bits of another blood protein, called fibrin. Fibrin molecules arrange themselves into a lattice with strands cross-linked by the blood component, Factor XIII. This resulting cross-linked net helps to stabilize the clot.

Numerous variants of fibrin sealant exist, including autologous products. Other, non-fibrin sealant types are thrombin, collagen & gelatin-based sealants.

Fibrin sealants are used in the US in a wide array of applications; they are used the most in orthopedic surgeries, where the penetration rate is thought to be 25-30%. Fibrin sealants can, however, be ineffective under wet surgical conditions. The penetration rate in other surgeries is estimated to be about 10-15%.

Fibrin-based sealants were originally made with bovine components. These components were judged to increase the risk of developing bovine spongiform encephalopathy (BSE), so second-generation commercial fibrin sealants (CSF) avoided bovine-derived materials. The antifibrinolytic tranexamic acid (TXA) was used instead of bovine aprotinin. Later, the TXA was removed, again due to safety issues. Today, Ethicon’s (JNJ) Evicel is an example of this product, which Ethicon says is the only all human, aprotinin free, fibrin sealant indicated for general hemostasis. Market growth in the sealants sector is driven by the need for improved biocompatibility and stronger sealing ability—in other words, meeting the still-unsatisfied needs of physician end-users.

The current market penetration of sealant products in the US stands at about 25% of eligible surgeries, with their largest volume of use in orthopedics.

Selected Fibrin and Other Sealant Types*

screen-shot-2016-10-26-at-2-10-21-pm

*Market status on each detailed in report S290.

Source: MedMarket Diligence, LLC; Sealants, Glues, Hemostats to 2022.

 

Six Key Trends in Sealants, Glues, Hemostats Markets to 2022

From July 2016 published Report #S290.

Here are six key trends we see in the global market for surgical sealants, glues, and hemostats:

  1. Aggressive development of products (including by universities, startups, established competitors), regulatory approvals, and new product introductions continues in the U.S., Europe, and Asia/Pacific (mostly Japan, Korea) to satisfy the growing volume of surgical procedures globally.
  2. Rapid adoption of sealants, glues, hemostats in China will drive much of the global market for these products, but other nations in the region are also big consumers, with more of the potential caseload already tapped than the rising economic China giant. Japan is a big developer and user of wound product consumer. Per capital demand is also higher in some countries like Japan.
  3. Flattening markets in the U.S. and Europe (where home-based manufacturers are looking more at emerging markets), with Europe in particular focused intently on lowering healthcare costs.
  4. The M&A, and deal-making that has taken place over the past few years (Bristol-Myers Squibb, The Medicines Company, Cohera Medical, Medafor, CR Bard, Tenaxis, Mallinckrodt, Xcede Technologies, etc.) will continue as market penetration turns to consolidation.
  5. Growing development on two fronts: (1) clinical specialty and/or application specific product formulation, and (2) all purpose products that provide faster sealing, hemostasis, or closure for general wound applications for internal and external use.
  6. Bioglues already hold the lead in global medical glue sales, and more are being developed, but there are also numerous biologically-inspired, though not -derived, glues in the starting blocks that will displace bioglue shares. Nanotech also has its tiny fingers in this pie, as well.

See Report #S290, “Worldwide Sealants, Glues, and Hemostats Markets, 2015-2022”.

Sealants, glues, wound closure, anti-adhesion market segments by country

The global market for surgical sealants, glues, other wound closure and anti-adhesion products (collectively referred to as "securement "products) is, like many medtech markets, dominated by the U.S., followed by Europe.  But as one examines the performance of individual product segments in this market, it becomes clear that local markets have enough differences in their drivers to result in surprising variation from one another.

Below are illustrated the absolute size of the markets for products in securement by country and the relative contribution of revenues from each securement product type by country.  The differences stand out.

Source: Preliminary findings, Report #S180, "Worldwide Surgical Sealants, Glues, Wound Closure and Anti-Adhesion Markets, 2010-2015". (Publishing October 2010)

Oysters, mussels, and (a growing list of) other bioglue sources

(Updated, 3 March 2014)

Previously, we have highlighted multiple types of naturally occurring biological glues (“bioglues”) that have been studied for their potential to be applied to human surgical/medical applications. (See “Bio Glues: Crab shells, spider webs, gecko feet, burrowing frogs, mussels and c. crescentus bacteria“).

Add to this list:

Nature-inspired surgical glue. Researchers at Brigham and Women’s Hospital and Boston Children’s Hospital are developing a poly(glycerol sebacate acrylate) (PGSA), a gel-like biomaterial that is composed of glycerol, a common ingredient in pharmaceutical, food and other human use, and sebacic acid, a naturally occurring fatty acid. This biomaterial compound will potentially enable strong, non-toxic adhesion of tissues while being water insoluble, a set of key requirements for effective surgical glues that can function in internal (as opposed to topical) applications. See link.

Oysters. Research is being done by Jonathan Wilkder at Perdue University on the naturally occurring cement used by oysters to secure their shells to each other and to reefs making extensive structures. The “cement” has turned out to be 10% organic (a protein) and 90% inorganic calcium carbonate, which turns out to be only slightly different in proportions than the oysters’ shells.  Most importantly, and this is an important consideration in the study, this cement is wet-setting, which is a valuable characteristic of surgical glue or bone cement.

Since manufacturers wish to develop a surgical glue with the requisite strength while also being biocompatible, the bioglues of oysters, mussels and other organisms become acutely of interest.  By contrast, synthetically developed high strength glues are often cyanoacrylate-based or similar and are therefore characterized by toxicity in local tissues, limiting their use to topical applications.


Bioglues are a topic of coverage in MedMarket Diligence’s analysis of the global products, technologies and markets surgical sealants, glues and wound closure.  See “Worldwide Market for Surgical Sealants, Glues, Wound Closure and Anti-Adhesion, 2012-2017”, Report #S190, publishing February 2012.