Where is the medtech growth?

Medical technology is, for many of its markets, being forced to look for growth from more sources, including emerging markets. Manufacturers are able to gain better margins through innovation, but their success varies by clinical application.

Cardiology. A demanding patient base (it’s life or death). Be that as it may, there are few new or untapped markets, only the opportunity for new technologies to displace existing markets. Interventional technologies are progressively enabling treatment of larger patient populations, but much growth will still be from emerging markets.

Wound management. Even the most well-established markets will see growth from innovation. The wound market just needs less growth to be happy, since small percentage growth becomes very large by volume. And yet, some of the most significant growth in the long run will be for more advanced

Surgery. Every aspect of surgery seems to be subject to attempts to improve upon it. Robotics, endoscopy, transcatheter, single-port, incisionless, natural orifice. Interventional options are increasing the treatable patient population, and it seems likely that continued development (e.g., materials, including biodegradables, use of drug or other coatings, including cells) will yield more routine procedures for more and different types of conditions, many of which have been inadequately served, if it all.

Orthopedics. Aging populations demanding more agility and mobility will drive orthopedic procedures and device use. Innovation still represents some upside, but more from 3D printing than other new technologies being introduced to practice.

Tissue/Cell Therapy. This is a technology opportunity (and represents radical innovation for most clinical areas), but it is also a set of target clinical applications, since tissues/cells are being engineered to address tissue or cell trauma or disease. Growth is displacing existing markets with new technology, such as bioengineered skin, tendons, bladders, bone, cardiac tissue, etc. These are fundamentally radical technologies for the target applications.

Below is my conceptual opinion on the balance of growth by clinical area coming from routine innovation (tweaks, improvements), radical innovation (whole new “paradigms” like cell therapy in cardiology), and emerging market growth (e.g., China, S. America).

Screen Shot 2016-06-22 at 1.56.13 PM

Source: MedMarket Diligence, LLC, opinion!

Medtech midterm; Cardiovascular procedures; Wound shifts; Fundings

d5472bf8-1237-4ecc-a976-28a1b2fc7f3f.jpg

advanced medical technologies

A weekly(ish) newsletter to our blog subscribers.
From MedMarket Diligence, LLC
(Make note of this code: “Optinthirtyoff”)

From “Medtech is Dead. Long Live Medtech“, here is some of what we can expect in the next 5-10 years in medtech:

  • Type 1 diabetes gradually becomes less burdensome, with fewer complications, and improved quality of life for patients.
  • Type 2 diabetes continues to plague Western markets in particular, despite advances in diagnosis, treatment, and monitoring due to challenges in patient compliance.
  • Cancer five year survival rates will dramatically increase for many cancers. The number of hits on Google searches for “cure AND cancer” will reflect this.
  • Multifaceted approaches available for treatment of traumatic brain injury and spinal cord injury – encompassing exoskeletons to help retrain/rehabilitate and increase functional mobility, nerve grafting, cell/tissue therapy, and others.
  • Organ/device hybrids will proliferate and become viable alternatives to transplant, or bridge-to-transplant, for pulmonary assist, kidney, liver, heart, pancreas and other organ.
  • Stem cells have had dramatic success, and the science will have improved, but challenges remain, especially since the excitement around stem and other pluripotent cells has created a climate not far removed from the wild west – the potential of such open territory being up for grabs has drawn hordes of activity, not all in the best interests of patients or shareholders. But in this time frame, specific treatments will likely have become standards of care for some diseases, while the challenge and opportunity remain for many others.
From “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”.

Cardiovascular Surgical and Interventional Procedures

  • Coronary Artery Bypass Graft Surgery
  • Coronary Mechanical and Laser Atherectomy
  • Coronary Angioplasty and Stenting
  • Mechanical Thrombectomy
  • Ventricular Assist Device Placement
  • Total Artificial Heart
  • Donor Heart Transplantation
  • Lower Extremity Arterial Bypass Surgery
  • Percutaneous Transluminal Angioplasty (PTA) and Bare Metal Stenting
  • PTA and Drug-Eluting Stenting
  • PTA with Drug-Eluting Balloons
  • Mechanical and Laser Atherectomy
  • Catheter-Directed Thrombolysis and Thrombectomy
  • Surgical and Endovascular Thoracic Aortic Aneurysm Repair
  • Surgical and Endovascular Abdominal Aortic Aneurysm Repair
  • Vena Cava Filter Placement
  • Endovenous Ablation
  • Venous Revascularization
  • Carotid Endarterectomy
  • Carotid Artery Stenting
  • Cerebral Thrombectomy
  • Cerebral Aneurysm and Arteriovenous Malformation (AVM) repair
  • Congenital Heart Defect Repair
  • Heart Valve Repair and Replacement Surgery
  • Transcatheter Valve Repair and Replacement
  • Pacemaker Implantation
  • Implantable Cardioverter Defibrillator Placement
  • Cardiac Resynchronization Therapy Device Placement
  • Standard SVT Ablation
  • Surgical AFIb Ablation
  • Transcatheter AFib Ablation

See Report #C500, publishing June 2016.

From “Worldwide Wound Management, Forecast to 2024”, Report #S251, published December 2015

e40a6a3f-1b21-40de-98ba-3467c5698825.png
Source: Report #S251.

Selected Medtech Fundings, May 2016

7114c77d-d736-44de-89c4-cc3b76f8c6b8.png
Source: Compiled by MedMarket Diligence, LLC

During the month of June 2016, our opt-in blog readers are eligible for 30% off any MedMarket Diligence report (not valid with other offers). To take advantage of this, order any report from an online link at mediligence.com (or go to store) and, at checkout, enter the coupon code “Optinthirtyoff” to save 30%.

Pending Reports from MedMarket Diligence:

  • Global Nanomedical Technologies, Markets and Opportunities, 2016-2021. Details.
  • Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022. Details.
  • Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022. Details.

Patrick Driscoll
(patrick)
MedMarket Diligence

The future (of medicine) is biology

It was once quite convenient for manufacturers of deluxe medical widgets to worry only about other manufacturers of deluxe medical widgets. Manufacturers must now widen their perspective to consider current and future competition (and opportunity) from whatever direction it may come. –> Just thought I might chime in and suggest that, if you do make such widgets, it might be a good idea to maybe throw at least an occasional sidelong glance at biotech. (Most of you are, great, but some of you think biotech is too far away to compete…)

Organ Bioengineering is years away and poses little challenge to medical devices …FALSE.  Urinary bladders have been engineered for pediatric applications. Bioengineered skin (the “integumentary” organ) is now routinely bioengineered for burns, chronic wounds, and other wound types. Across a wide range of tissue types (bone, cardiac, smooth muscle, dermal, etc.) scientists — clinicians — have rapidly developed technologies to direct the construction and reconstruction of these tissues and restore their structure and function.

Cell Biology. Of course cells are engineered into tissues as part of the science of tissue engineering, but combine this with advances in engineering not just between cells but between cells AND within cells and (…sound of my head exploding). With the sum of the understanding and capacity to control we have gained over cellular processes over the past few decades now rapidly accelerating, medical science is fast approaching the point at which it can dictate outcomes for cell, tissues, organs, organ systems, and humans (I am not frightened, but excited, with caution).  Our understanding and proficiency gained in manipulating processes from cell division to pluripotency to differentiation to senescence to death OR NOT has profound consequences for fatal, debilitating, incurable, devastating, costly, and nearly every other negative superlative you can conceive.

CRISPR*: This is a new, relatively simple, but extraordinary tool allowing researchers or, more importantly, physicians to potentially swap out defective genes with healthy ones. See Nature.
(* clustered regularly interspersed short palindromic repeats)

Biotech has, over its history, often succeeded in getting attention, but has had less success justifying it, leaving investors rudely awakened to its complexities.  It has continued, however, to achieve legitimately exciting medical therapeutic advances, if only as stepping stones in the right direction, like mapping the human genome, the development of polymerase chain reaction (“PCR”), and biotech-driven advances in molecular biology, immunology, gene therapy, and others, with applications ripe for exploitation in many clinical specialties, Sadly, the agonizing delay between advanced and “available now” has typically disappointed manufacturers, investors, clinicians and patients alike. CRISPR and other tools already available (see Genetic Engineering News and others) are poised to increase the expectations – and the pace toward commercialization – in biotechnology.

Vaccines and Infectious Disease: Anyone reading this who has been under a rock for lo these many years, blissfully ignorant of SARS, Ebola, Marburg, MRSA, and many other frightening acronyms besides HIV/AIDS (more than enough for us already) should emerge and witness the plethora of risks we face (and self-inflict through neglect), any one of which might ultimately overwhelm us if not medically then economically in their impacts. But capitalists (many altruistic) and others have come to the rescue with vaccines such as for malaria and dengue-fever and, even, one for HIV that is in clinicals.

Critical Mass, Synergies, and Info Tech. Biotechnology is succeeding in raising great gobs of capital (if someone has a recommended index/database on biotech funding, let me know?).  Investors appear to be forgetful increasingly confident (in the 1990s, I saw big layoffs in biotech because of ill-advised investments, but that was then…) that their money will result in approved products with protected intellectual property and adequate reimbursement and manageable costs in order to result in attractive financials. The advances in biological and medical science alone are not enough to account for this, but such advances are almost literally being catalyzed by information technologies that make important connections faster, yielding understanding and new opportunities. The net effect of individual medically-related disciplines (commercial or academic) advancing research more efficiently as a result of info tech and info sharing/synergies between disciplines is the expected burst of medical benefits ensuing from biotech. (Take a look also at Internet of DNA.)

Medtech Startups, 2010-2015

From 2010 to present (Oct 2015), as included in the Medtech Startups Database, MedMarket Diligence identified 442 new (under one year old) medical technology startups whose businesses encompass, alone or in combination, medical devices, diagnostics, biomaterials, and the subset of both biotech and pharma that is in direct competition with medical devices, including tissue engineering and cell therapy. Of these, 74% were founded in the U.S., 5% were founded in Israel, and the rest were founded in 18 other countries.

Companies in the database have been categorized by clinical and/or technology area of focus, with multiple categories possible (e.g., minimally invasive and orthomusculoskeletal and surgery). Below is the composition of the companies identified from Jan. 2010 to Oct. 2015.

Screen Shot 2015-10-06 at 4.50.10 PM

Source: Medtech Startups Database

Below is a graphic on the companies by country. The U.S. (not shown) led with 327 companies.

Screen Shot 2015-10-06 at 4.17.30 PM

Source: Medtech Startups Database

In the U.S., the breakdown by state, other than California and its 466 companies (excluded only to show states with significantly lower numbers), is as follows:

Screen Shot 2015-10-06 at 5.13.08 PM

Source: Medtech Startups Database

 

Where will medicine be in 2035?

(This question was originally posed to me on Quora.com. I initially answered this in mid 2014 and am revisiting and updating the answers now, in mid 2015.)

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, whether it is Obamacare, a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective.

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions.
    [View Aug. 2015: Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it.]
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.
    [View Aug. 2015: Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics. See pending report.]
  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.
    [View Aug. 2015: Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines. See pending report.]
  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    [View Aug. 2015: Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, long-term and/or less costly solutions. See Smithers Apex report.]
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.
    [View Aug. 2015: It’s a double-edged sword with the human genome. As the human blueprint, It is the potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions.]
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.
    [View Aug. 2015: The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.]
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.
    [View Aug. 2015: By 2035, technologies such as these will have measurably reduced inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of the NOTES technology platform. A wide range of other technologies (e.g., “gamma knife”) across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit without collateral damage.]
  • Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.
    [View Aug. 2015: There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits.]
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.
    [View Aug. 2015: This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.]

The breadth and depth of advances in medicine over the next 20 years will be extraordinary, since many doors have been recently opened as a result of advances in genetics, cell biology, materials science, systems biology and others — with the collective advances further stimulating both learning and new product development. 

New Medical Technologies at Startups, May 2015

Below is the list of technologies under development at medical technology companies identified in May 2015 and included in the Medtech Startups Database.

  • Nanotechnology-based diagnostic
  • Bone fixation devices, including for post-sternotomy closure
  • Devices and materials for bone lengthening
  • Nanopolymer drug delivery
  • Developing an artificial pancreas; combined blood glucose monitor and insulin pump
  • Terahertz radiation-based measurement of blood glucose
  • Patient-specific orthopedic implants
  • Undisclosed medical technology
  • Novel energy delivery-based medical technology
  • Device for early detection of cardiovascular disease based on endothelial dysfunction
  • Facet joint surgical instruments
  • Neuromodulation technology
  • Electric stimulation in wound healing
  • Mesenchymal stem cell treatment in cardiology, transplantation, and autoimmunity
  • Integrated blood glucose monitor, insulin dosing
  • Surgical instrumentation

For a historical listing of technologies at medtech startups, see link.

 

Medtech fundings in April 2015

Fundings for medical technologies in April 2015 reached $615 million, led by the huge $225 million funding of Intarcia Therapeutics.

Below are the top fundings for the month.

Company, funding Product/technology
Intarcia Therapeutics has raised $225 million in a round of funding according to the company Subcutaneous, osmotic pump for drug delivery in type 2 diabetes
Mesoblast has raised $58.5 million in a round of funding by Celgene Corp. Precursor and stem cells for cell therapy
MyoKardia, Inc., has raised $46 million in a round of funding according to a regulatory filing Genetically based treatments for cardiomyopathies
Scanadu has raised $35 million in a Series B round of funding according to press reports Device that enables patients to scan and upload diagnostic information
Neuronetics, Inc., has completed a $34.3 million Series F funding round, according to the company Transcranial magnetic stimulation for the treatment of depression
Lombard Medical, Inc., has raised $26 million in financing from Oxford Finance, LLC Stent grafts for treatment of abdominal aortic aneurysm
EBR Systems, Inc., has raised $20 million in a round of funding according to the company Wireless cardiac pacing

For the complete list of medtech fundings in April 2015, see link.

For a historical list of the individual fundings in medtech, by month, since 2009, see link.

Medtech fundings for June 2014

Fundings in medical technology for the month of June totaled $445 million, led by fundings of Benvenue Medical ($64 million) and InSightec ($50 million).

Below are the top fundings in the month.

Company funding Product/technology
Benvenue Medical, Inc., has raised $64 million in a round of funding according to the company Minimally invasive implants for spine surgery
InSightec, Inc., has raised $50 million in a Series D round of funding according to the company MR-guided focused ultrasound
Pixium Vision has raised $46.7 million in an initial public offering according to press reports Implants to treat blindness
OrthoPediatrics Corp. has raised $39 million in a round of funding according to a regulatory filing Orthopedic implant technologies designed for pediatric use
Cheetah Medical, Inc., has raised $33.85 million in a round of funding according to a regulatory filing Non-invasive hemodynamic monitoring
Spinal Kinetics, Inc., has raised $33.85 million of a planned $34.77 million round of funding according to a regulatory filing Motion preservation systems, including artificial discs, for degenerative disc disease

For a complete list of medtech fundings in June 2014, see link.

For a full list of the fundings in medtech, by month, since 2009, see link.

The amount of medtech funded is often less than half the story

In tracking venture capital or other money flowing into “medtech”, I am frequently struck by how often the numbers that are presented as evidence tell only part of the picture, like one of the several blindfolded men touching different parts of an elephant tasked with identifying what it is they are touching.

Recent results from Pricewaterhouse Coopers on Q1 2014 venture capital paints a picture illustrating an 11% increase from Q1 2013 to Q2 2014 in total funding for “medical device” companies, with a drop in the number of deals, from 29 to 25.

There are two problems with this, the first being that the fundings data so presented is only looking at “medical device” companies, the second being that we have no evidence on the number of companies seeking funding in either year.

First, talking about medical devices in 2014 is a lot like talking about horses in 1910.  Neither one tells the whole story of the markets in which they very clearly compete. Second, while the amount of money actually funded by VC in 2014 versus 2013 is obviously important (especially to the recipients), the number and size of the deals rejected in both years is also rather important as well (especially to the non-recipients).

So, what should be presented differently? Well, tracking the “medical device” industry is just not relevant anymore (I’ve already argued this ad nauseum), since medical devices don’t just compete with medical devices anymore — for clinical applications or venture funding. In my opinion, the tracking of funding should first look at funding in, say, coronary artery disease treatment (i.e., “disease state”), then consider the share of that funding that is going toward this or that therapeutic option. As for the amount funded, would it not be meaningful to all involved to track the amount of actual versus proposed funding, especially if the proposed funding was limited to actual deals that were ultimately accepted or rejected?

Below is the amount of funding in “medtech”* by month from January 1, 2009, to May 21, 2014, presented both as an annual overlay to reflect seasonality and as a continuum, with a linear trendline.

Screen Shot 2014-05-21 at 1.02.36 PM

 

 

Screen Shot 2014-05-21 at 1.12.37 PM

Source: MedMarket Diligence, LLC

_________________________
*What is “medtech”?: We view medical technology (medtech) as principally medical devices and equipment, but also all technologies that are directly competitive with or complementary to technologies represented by therapeutic or diagnostic medical devices/equipment.

Note: Historic coverage of “medtech” has been limited to medical devices, supplies and equipment. We feel that such a limited definition poorly reflects the true nature of the markets that once were limited to such products. In reality, assessing the markets and competition for medical devices by ONLY considering other medical devices would result in gross underestimations of both competition and market potential. Moreover, this is reflected in both the nature of medical devices, which may be hybrid device/bio/pharm products or products that may not be “devices” at all, especially in the typical definitions defined by material type and function, but that compete head-on with devices.

 

Where will medicine be in 20 years?

(This question was originally posed to me on Quora.com. I initially answered this in mid 2014 and am revisiting and updating the answers now, in mid 2015.)

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, whether it is Obamacare, a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective.

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions.
    [View Aug. 2015: Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it.] 
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.
    [View Aug. 2015: Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics.] 
  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.
    [View Aug. 2015: Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines.] 
  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    [View Aug. 2015: Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, long-term and/or less costly solutions.] 

  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.
    [View Aug. 2015: It’s a double-edged sword with the human genome. As the human blueprint, It is the potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions.] 
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.
    [View Aug. 2015: The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.] 
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.
    [View Aug. 2015: By 2035, technologies such as these will have measurably reduced inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of the NOTES technology platform. A wide range of technologies across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit without collateral damage.] 
  • Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.
    [View Aug. 2015: There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits.]
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.
    [View Aug. 2015: This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.]

There will be many more unforeseen medical advances achieved within 20 years, many arising from research that may not even be imagined yet. However, the above advances are based on actual research and/or the advances that have already arisen from that research.