Technologies Under Development at Medtech Startups, November 2016

Below is a list of the technologies under development at medical startups recently identified by MedMarket Diligence and included in the Medtech Startups Database.

  • Intravenous light therapy.
  • Post-op drainage device.
  • Devices for vascular access during hemodialysis.
  • Implantable, localized drug delivery for cancer.
  • Technology to facilitate ureter placement.
  • Tools to improve safety of surgery.
  • Technologies for improved tendon repair.
  • Needle guidance and analytics to facilitate spinal tap.
  • Closed-loop catheter for localized liver cancer treatment.
  • Cancer detection
  • Improved vascular access for dialysis.
  • Developing an artificial pancreas.
  • Nasogastric feeding system.

For a complete list of technologies in development at medtech startups identified since 2008, see link.

Where will medicine be in 2035?

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, in the U.S., whether Obamacare persists (most likely) or is replaced with a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective. 

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions. Cancer and genomics, in particular, has been a lucrative study (see The Cancer Genome Atlas). Immunotherapy developments are also expected to be part of many oncology solutions. Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it. 
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.

Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics.

  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.

Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines.

  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, long-term and/or less costly solutions.
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.

    As the human genome is the engineering plans for the human body, it is a potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions –> Case in point, the recent emergence of the gene-editing technology, CRISPR, has set the stage for practical applications to correct genetically-based conditions.
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma, including pharmacogenomics to predict drug response. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.

    By 2035, technologies such as these will measurably reduce inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of minimally invasive technologies (e.g., especially the NOTES technology platform). A wide range of other technologies (e.g., gamma knife, minimally invasive surgery/intervention, etc.) across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit while minimizing or eliminating collateral damage.

Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits.

  • Personalized medicine. Perfect matches between a condition and its treatment are the goal of personalized medicine, since patient-to-patient variation can reduce the efficacy of off-the-shelf treatment. The thinking behind gender-specific joint replacement has led to custom-printed 3D implants. The use of personalized medicine will also be manifested by testing to reveal potential emerging diseases or conditions, whose symptoms may be ameliorated or prevented by intervention before onset.
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.Other technologies being developed aggressively now will have an impact over the next twenty years, including medical/surgical robots (or even biobots), neurotechnologies to diagnose, monitor, and treat a wide range of conditions (e.g., spinal cord injury, Alzheimer’s, Parkinson’s etc.).

The breadth and depth of advances in medicine over the next 20 years will be extraordinary, since many doors have been recently opened as a result of advances in genetics, cell biology, materials science, systems biology and others — with the collective advances further stimulating both learning and new product development. 


See the 2016 report #290, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.”

Where is the medtech growth?

Medical technology is, for many of its markets, being forced to look for growth from more sources, including emerging markets. Manufacturers are able to gain better margins through innovation, but their success varies by clinical application.

Cardiology. A demanding patient base (it’s life or death). Be that as it may, there are few new or untapped markets, only the opportunity for new technologies to displace existing markets. Interventional technologies are progressively enabling treatment of larger patient populations, but much growth will still be from emerging markets.

Wound management. Even the most well-established markets will see growth from innovation. The wound market just needs less growth to be happy, since small percentage growth becomes very large by volume. And yet, some of the most significant growth in the long run will be for more advanced

Surgery. Every aspect of surgery seems to be subject to attempts to improve upon it. Robotics, endoscopy, transcatheter, single-port, incisionless, natural orifice. Interventional options are increasing the treatable patient population, and it seems likely that continued development (e.g., materials, including biodegradables, use of drug or other coatings, including cells) will yield more routine procedures for more and different types of conditions, many of which have been inadequately served, if it all.

Orthopedics. Aging populations demanding more agility and mobility will drive orthopedic procedures and device use. Innovation still represents some upside, but more from 3D printing than other new technologies being introduced to practice.

Tissue/Cell Therapy. This is a technology opportunity (and represents radical innovation for most clinical areas), but it is also a set of target clinical applications, since tissues/cells are being engineered to address tissue or cell trauma or disease. Growth is displacing existing markets with new technology, such as bioengineered skin, tendons, bladders, bone, cardiac tissue, etc. These are fundamentally radical technologies for the target applications.

Below is my conceptual opinion on the balance of growth by clinical area coming from routine innovation (tweaks, improvements), radical innovation (whole new “paradigms” like cell therapy in cardiology), and emerging market growth (e.g., China, S. America).

Screen Shot 2016-06-22 at 1.56.13 PM

Source: MedMarket Diligence, LLC.

Technologies at Medtech Startups, January 2016

Below are technologies under development at startups recently identified and included in the Medtech Startups Database.

  • Breast cancer detection.
  • Technologies in cardiac surgery, neuromodulation, and cardiac rhythm management.
  • Technologies for minimally invasive laminoplasties, foraminoplasties, and implantables in spine surgery.
  • Xenogenically-sourced tissue matrices for soft tissue, regenerative, and vascular applications.
  • Device to clean trocar during laparoscopic procedures.
  • Pressure sensors in catheterization/angiography.

For a comprehensive listing of the technologies under development at startups identified since 2008, see link.

Spine Surgery is Led By the U.S. and Thoracolumbar Fusion

From, “Global Market For Medical Device Technologies in Spine Surgery, 2014-2021”, Report #M540.

Spine surgery remains a uniquely American pastime, based at least on sales of technologies including spinal fusion, minimally invasive spine surgical technologies, and orthobiologics used for spine.

The patient demand and associated utilization rates, prices, reimbursement and other drivers make the U.S. an even bigger than it is in most medtech markets. And globally, as well as in the U.S., thoracolumbar fusion drives the most sales.

 


 

From, “Global Market For Medical Device Technologies in Spine Surgery, 2014-2021”, Report #M540.

Spine Surgery Advances and Geographic Expansion Driving $9 Billion Market; MedMarket Diligence, LLC

Spine surgery manufacturers are driving growth by continuing to advance new technologies in implants, instrumentation and minimally invasive delivery while penetrating and expanding markets outside the U.S.

The $9.17 billion global market for cervical fusion, thoracolumbar Implants, MIS spine fusion, interbody fusion, and orthobiologics has evolved dramatically over the last several decades as a result of significant advances in the understanding of spinal biomechanics, the proliferation of sophisticated spinal instrumentation devices, surgical advances in bone fusion techniques, refinement of anterior approaches to the spine and the emergence and development of microsurgical, minimally invasive methods and robotics. As a result of these advances, it is now possible to stabilize every segment of the spine successfully, regardless of the offending pathology. The global market for spine surgery devices is detailed in the MedMarket Diligence report, “Global Market for Medical Device Technologies in Spine Surgery, 2014-2021.” (see http://mediligence.com/m540/)

“Well established and emerging spine surgery companies alike are succeeding by accomplishing three things — providing greater resources to further product development, expanding of sales and marketing resources, and growing new and emerging geographic regions,” says Patrick Driscoll, of MedMarket Diligence. “The result is continued strong sales growth globally, with a robust competitive landscape of companies of all sizes, keeping big players like Medtronic, DePuy,, Stryker, and Zimmer-Biomet on their toes” says Driscoll.

Spine fusion is the fastest growing technology in spine surgery and with growth in spine surgery being fastest in the Asia-Pacific and Central/Latin America, the growth of spine fusion in those areas is double-digit. The improvements in spine surgery and technology development have produced steady growth in volumes of surgeries, supported by reimbursement and clinical outcomes (and the increasingly active aging population). Spine surgery, with its exponential growth, has been the answer to an orthopaedic industry seeking to optimize earnings and add value for shareholders.

The MedMarket Diligence report, “Global Market for Medical Device Technologies in Spine Surgery, 2014-2021: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World,” (report #M540) is a detailed market and technology assessment and forecast of the products and technologies in the management of diseases and disorders of the spine. The report describes the diseases and disorders of the spine, characterizing the patient populations, their current clinical management, and trends in clinical management as new techniques and technologies are expected to be developed and emerge.

The report details the currently available products and technologies, and the manufacturers offering them. The report details the products and technologies under development and markets for each in spine surgery. The report provides a current and forecast assessment by region/country of procedures and manufacturer revenues for, specifically, Americas (United States, Rest of North America, Latin America), European Union (United Kingdom, Germany, France, Italy, Spain, Rest of Europe), Asia-Pacific (Japan, China, India, Rest of Asia/Pacific) and Rest of World. The forecast addresses the product- and country-specific impacts in the market of new technologies through the coming decade.

The report profiles 38 of the most notable current and emerging companies in this industry, providing data on their current products, current market position and products under development. The products and activities of numerous additional startup and emerging companies are also detailed in the report.

The report is described in detail at http://mediligence.com/m540/ and may be ordered for immediate download from https://shop.mediligence.com/index.php/downloads/m540/.

Three Key Forces Behind Startups and Investment in Medical Technology

We see three key forces underlying investment trends in medical technology:

  • The spectrum of competition has been broadened and sometimes isn’t even obvious.

Widely different technologies (as in treatment of coronary artery disease, see white paper) can address a clinical condition, with the solution to the problem being the focus of new investment.

New materials for devices, drug-device hybrids, biotech-driven solutions, and other innovations can create competition between very different technologies. As a result, the paradigms and truths that held true in the past, when devices only went head-to-head with devices, are no longer relevant, creating the need to better assess the competitive landscape.

Manufacturers must there develop good market awareness, as in being cognizant of all the potential source of competition, such as from companies in adjacent markets who might pivot and seize market share.

  • Money flows to niches in medtech where the demand for clinical utility is high.

The biggest forces driving medtech are increasing patient populations or the cost of managing them. Niches that address the challenges of an older population with unsolved painful and or costly conditions (orthopedics, chronic wounds, diabetes, bariatrics) have prominent cost targets that stimulate investment.

Patient demographics, healthcare cost/utility demands and other forces make some medtech niches very attractive, even if only as a result of technology migration (e.g., to growth geo markets).

  • Underserved patient populations command almost as much attention as the untapped patient populations.

There is much potential return on investment to be made in blockbuster treatments, but these can be financial sinkholes compared to less grandiose technology solutions. A motive force exists in medtech, centered around healthcare costs, that is relentlessly forcing medical technology innovators to find opportunity within existing markets, by eliminating cost (e.g., shifting care to outpatient as via minimally invasive technologies). Significant medical technology investment has already recognized the value in targeting conditions for which new technology, new clinical practices and/or simply new ways of thinking can improve the quality of life, patient costs or both.

Medtech investment is most serious when it is (1) in high dollar value, or (2) tied to the formation of companies. It reflects confidence in that sector to the degree set by the investment.

In the past five years, MedMarket Diligence has tracked the identification of over 600 companies in medtech. Below is the distribution of their focus across a large number of clinical and technology areas (multiple possible, as in “minimally invasive” and “orthomusculoskeletal”).

These companies have also been tracked through their specific investments (detailed historically at link).

Source: MedMarket Diligence, LLC; Medtech Startups Database.

Cardiology, orthopedics, and surgery are mainstay drivers of new technology development in medtech, as has been the push for minimally invasive therapies, but nanotechnology, interventional (e.g., transcatheter) technologies, biomaterials, wound management and other niches have a steady stream of new company formations.


See recent reports from MedMarket Diligence in the following clinical areas.

Active Companies in Spine Surgery, 2015

Companies covered in the MedMarket Diligence report #M540, “Global Market for Medical Device Technologies in Spine Surgery, 2014-2021: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World”.

  • A-Spine Holding Group Corp
  • A-Spine USA, Inc.
  • Aap Implantate AG
  • Aesculap AG & CO. KG
  • Alphatec Spine, Inc.
  • Anatomica AB
  • Argomedical GmbH
  • ARTOSS GmbH
  • Arthrex, Inc.
  • Biocomposites Ltd.
  • Biomatlante
  • Biomet, Inc.
  • Biomet Europe
  • Biomet UK Ltd
  • Biomet France S.A.R.L.
  • Biomet Italia S.r.l.
  • Biomet Deutschland GmbH
  • Biomet Spain Orthopaedics, S.L.
  • Biotechni
  • BONESUPPORT AB
  • Ceraver
  • coLigne AG
  • Corin Group PLC
  • Cousin Biotech
  • Curasan AG
  • DePuy Orthopaedics, Inc.
  • DePuy France
  • DePuy Orthopädie GmbH
  • DePuy Italy SRL
  • DePuy Spain c/o Johnson & Johnson Medical
  • DePuy UK
  • Dieter Marquardt Medizintechnik GmbH
  • Eden Spine Europe SA
  • Elos Medical AB
  • Exactech Inc.
  • Graftys
  • Groupe Lepine
  • HiT Medica
  • Hipokrat Medical Devices
  • Implants Industrie
  • Implants International
  • Implants International Limited
  • Integra Lifesciences
  • JRI Limited
  • K2M, Inc.
  • Kasios
  • Kiscomedica
  • Lafitt S.A.
  • LDR Médical
  • Lima LTO
  • Mathys AG Bettlach
  • Medicrea Technologies
  • Medtronic Spinal and Biologics
  • Medtronic Österreich GmbH
  • N.V. Medtronic Belgium S.A.
  • Medtronic GmbH
  • Medtronic France S.A.S.
  • Medtronic Ibérica, S.A.
  • Medtronic Italia S.p.A.
  • Medtronic Limited
  • Orthovita, Inc.
  • OSD – Orthopaedic & Spine Development
  • Peter Brehm GmbH
  • Permedica S.p.A.
  • PINA Medizintechnik Vertriebs AG
  • Serf
  • SIGNUS Medizintechnik GmbH
  • Sintea Biotech S.p.A.
  • Small Bone Innovations, Inc.
  • Small Bone Innovations International
  • Smith & Nephew plc
  • Smith & Nephew Inc
  • Smith & Nephew SA
  • Smith & Nephew GmbH
  • Smith & Nephew S.A.
  • Smith & Nephew Orthopaedics Ltd
  • Spine Network
  • SpineVision SA
  • Stryker Corporation
  • Stryker European Headquarters
  • Stryker France SA
  • Stryker Howmedica GmbH
  • Stryker UK Limited
  • Stryker Italia S.r.l.
  • Stryker Howmedica Iberica S.L.U.
  • Surgi C
  • SURGIVAL-GRUPO COSíAS
  • Surgicraft
  • Synimed Synergie Ingénierie Médicale S.A.R.L.
  • Synthes GmbH
  • Teknimed
  • Vertebron
  • Viscogliosi Brothers LLC
  • Tornier S.A.
  • Wright Medical Technologies Inc
  • Zimmer Holdings Inc.
  • Zimmer France
  • Zimmer Chirurgie GmbH
  • Zimmer S.R.L., Italy
  • Zimmer, S.A.
  • Zimmer Ltd

See, ” MedMarket Diligence report #M540, “Global Market for Medical Device Technologies in Spine Surgery, 2014-2021”. Published September 2015.

Technologies in Development at Medtech Startups, October 2015

In our flurry of activity in October, we overlooked summarizing the new medical technologies identified at startups and added to the Medtech Startups Database:

  • Neodymium vaginal dilator for treatment of pelvic pain.
  • Large bore, power injection vascular access
  • Surgical instruments for use in bariatrics.
  • Surgical oncology.
  • Spine surgical technology including expandable intervertebral cage.
  • Technologies to treat hearing loss.
  • Device to determine blood vessel size.
  • Cerebrospinal fluid shunt.
  • Focused ultrasonic surgical devices for hemostasis, cauterization, and ablation.
  • Collagen polymers to create 3D tissue systems for drug discovery, engineered tissue/organ, wound management, and 3D bioprinting.
  • Regenerative medicine to treat brain injury or damage.
  • Neuro-monitoring and neuro-critical care.
  • Orthomusculoskeletal implants.
  • Devices and methods for hip replacement
  • Intraoperative image system.
  • Exocentric medical device
  • Electro-hydraulic generated shockwave for cosmetic, medical applications.

For a historical listing of technologies at medtech startups, see link.

Technologies in Development at Medtech Startups, November 2015

Below is a list of the technologies under development at new medtech companies and recently added to the Medtech Startups Database.

  • Devices to assist pulmonary function.
  • Technologies to improve performance of orthopedic implantation.
  • Treatments for conditions associated with spinal cord injury and disease.
  • Technologies for the preservation and transport of organs and biologicals.
  • Interventional technologies for the treatment of neurovascular technologies.
  • Spinal fusion technologies
  • Orthopedic implants, including a prosthetic meniscus for placement in the knee joint.
  • Women’s health products including low risk device to measure cervical dilation.
  • Medical device to rapidly and accurately diagnose otitis media.
  • Bioabsorbable heart valve.
  • Electro-hydraulic generated shockwave for cosmetic, medical applications.

For a historical listing of technologies at medtech startups, see link.