List of high growth medtech products

Below is a table with a list of the market segments demonstrating greater than 10% compound annual growth rate for the associated region through 2022, drawn from our reports on tissue engineering & cell therapy, wound management, ablation technologies, stroke, peripheral stents, and sealants/glues/hemostats. Products with over 10% CAGR in sales are shown in descending order of CAGR.

RankProductTopicRegion
1General, gastrointestinal, ob/gyn, othertissue/cellWW
2Ophthalmologytissue/cellWW
3Organ Replacement/ Repairtissue/cellWW
4Urologicaltissue/cellWW
5Neurologicaltissue/cellWW
6Autoimmune Diseasestissue/cellWW
7CV/ Vasculartissue/cellWW
8Bioengineered skin and skin substituteswoundRest of A/P
9Peripheral drug-eluting stents (A/P)peripheral interventionalA/P
10Peripheral drug eluting stentsperipheral interventionalRoW
11Peripheral drug-eluting stents (US)peripheral interventionalUS
12Negative pressure wound therapywoundGermany
13Hydrocolloid dressingswoundRest of A/P
14Cancertissue/cellWW
15Foam dressingswoundRest of A/P
16Growth factorswoundRest of A/P
17Alginate dressingswoundRest of A/P
18Dentaltissue/cellWW
19Bioengineered skin and skin substituteswoundJapan
20Hemostatssealants, glues, hemostatsA/P
21Skin/ Integumentarytissue/cellWW
22Bioengineered skin and skin substitutessealants, glues, hemostatsUS
23Bioengineered skin and skin substitutessealants, glues, hemostatsWW
24Film dressingswoundRest of A/P
25Surgical sealantssealants, glues, hemostatsA/P
26Hydrogel dressingswoundRest of A/P
27TAA Stent graftsperipheral interventionalA/P
28Negative pressure wound therapywoundRoW
29Biological gluessealants, glues, hemostatsA/P
30FoamwoundRoW
31HydrocolloidwoundGermany
32AAA Stent graftsperipheral interventionalA/P
33Cerebral thrombectomy systemsstrokeA/P
34High-strength medical gluessealants, glues, hemostatsA/P
35Carotid artery stenting systemsstrokeA/P
36Cardiac RF ablation productsablationA/P
37Alginate dressingswoundGermany
38Peripheral venous stentsperipheral interventionalA/P
39Cerebral thrombectomy systemsstrokeUS
40Left atrial appendage closure systemsstrokeA/P
41Cyanoacrylate gluessealants, glues, hemostatsA/P
42Foam dressingswoundRest of EU
43Foam dressingswoundKorea
44Cryoablation cardiac & vascular productsablationA/P
45Bioengineered skin and skin substituteswoundGermany
46Thrombin, collagen & gelatin-based sealantssealants, glues, hemostatsA/P
47Cardiac RF ablation productsablationRoW
48Bioengineered skin and skin substituteswoundRoW
49Microwave oncologic ablation productsablationA/P

Note source links: Tissue/Cell, Wound, Sealants/Glues/Hemostats, Peripheral Stents, Stroke, Ablation.

Source: MedMarket Diligence Reports

Where will medicine be in 2035?

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, in the U.S., whether Obamacare persists (most likely) or is replaced with a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective. 

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions. Cancer and genomics, in particular, has been a lucrative study (see The Cancer Genome Atlas). Immunotherapy developments are also expected to be part of many oncology solutions. Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it. 
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.

Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics.

  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.

Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines.

  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, long-term and/or less costly solutions.
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.

    As the human genome is the engineering plans for the human body, it is a potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions –> Case in point, the recent emergence of the gene-editing technology, CRISPR, has set the stage for practical applications to correct genetically-based conditions.
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma, including pharmacogenomics to predict drug response. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.

    By 2035, technologies such as these will measurably reduce inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of minimally invasive technologies (e.g., especially the NOTES technology platform). A wide range of other technologies (e.g., gamma knife, minimally invasive surgery/intervention, etc.) across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit while minimizing or eliminating collateral damage.

Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits.

  • Personalized medicine. Perfect matches between a condition and its treatment are the goal of personalized medicine, since patient-to-patient variation can reduce the efficacy of off-the-shelf treatment. The thinking behind gender-specific joint replacement has led to custom-printed 3D implants. The use of personalized medicine will also be manifested by testing to reveal potential emerging diseases or conditions, whose symptoms may be ameliorated or prevented by intervention before onset.
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.Other technologies being developed aggressively now will have an impact over the next twenty years, including medical/surgical robots (or even biobots), neurotechnologies to diagnose, monitor, and treat a wide range of conditions (e.g., spinal cord injury, Alzheimer’s, Parkinson’s etc.).

The breadth and depth of advances in medicine over the next 20 years will be extraordinary, since many doors have been recently opened as a result of advances in genetics, cell biology, materials science, systems biology and others — with the collective advances further stimulating both learning and new product development. 


See the 2016 report #290, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.”

White Paper: Lasers and electrosurgery sees sales grow by $96 million and $199 million respectively

Ablation is not a new technology, nor is it a recent addition to the tools available to clinicians (electrosurgery dates back a hundred years or more), but is still evolving in both the practice of medicine and surgery and the medtech industry. New technology developments, changes in clinical practice and growth and migration of the technologies globally are characteristics of ablation as a worldwide market with significant change and opportunity.

New ablation technologies have arisen at different times over the past 50 years, accentuated by the emergence of sophisticated instrumentation and devices designed to very precisely apply their inherent energy toward specific clinical applications. This has been and will continue to be a pattern in the ablation market, as manufacturers develop new instruments and methods to refine the delivery of ablation toward specific clinical applications. Consequently, revenues will continue to shift from one modality to another in the pursuit of improved clinical outcomes.

Download a White Paper on tissue ablation at link.

See “The Future of Tissue Ablation Products to 2020″ at link.

Medtech Startups, 2010-2015

From 2010 to present (Oct 2015), as included in the Medtech Startups Database, MedMarket Diligence identified 442 new (under one year old) medical technology startups whose businesses encompass, alone or in combination, medical devices, diagnostics, biomaterials, and the subset of both biotech and pharma that is in direct competition with medical devices, including tissue engineering and cell therapy. Of these, 74% were founded in the U.S., 5% were founded in Israel, and the rest were founded in 18 other countries.

Companies in the database have been categorized by clinical and/or technology area of focus, with multiple categories possible (e.g., minimally invasive and orthomusculoskeletal and surgery). Below is the composition of the companies identified from Jan. 2010 to Oct. 2015.

Screen Shot 2015-10-06 at 4.50.10 PM

Source: Medtech Startups Database

Below is a graphic on the companies by country. The U.S. (not shown) led with 327 companies.

Screen Shot 2015-10-06 at 4.17.30 PM

Source: Medtech Startups Database

In the U.S., the breakdown by state, other than California and its 466 companies (excluded only to show states with significantly lower numbers), is as follows:

Screen Shot 2015-10-06 at 5.13.08 PM

Source: Medtech Startups Database

 

Growth of Ablation Technologies, Applications, Worldwide

The growth in sales of a medical technology is dictated by a unique combination of a specific technology in a specific clinical application in a specific geographic market.

In the Smithers Apex report, The Future of Tissue Ablation Products to 2020, the markets for the different ablation technology types were assessed per application in each of the major world geographies. See the groupings, below:

Ablation Types and Clinical Applications:

  • Electrosurgical/radiofrequency
    • Cardiac
    • Surgical
  • Microwave
    • Oncologic
    • Urologic
  • Laser
    • Aesthetic
    • Ophthalmic
    • Surgical
  • External Beam Radiation Therapy (EBRT)
    • LINAC Systems
    • Cobalt-60
  • Cryoablation
    • Cardiac & Vascular
    • Oncologic Surgery
    • GYN Surgery
    • Dermal/Cutaneous Surgical
  • Ultrasound
    • Ophthalmic (Cataract) Surgical
    • Multipurpose Surgical
    • Urologic Surgical
    • Multipurpose High Intensity Focused Ultrasound (HIFU)

Geographic Areas:

  • United States & Other Americas
  • Largest Western & European States
  • Major Asian States
  • Rest of World

The Smithers Apex report contains the detailed assessment of ablation technology sales in each combination of technology, geography and clinical application. Below is illustrated graphically, sorted by compound annual growth rate in sales, each of the combinations.

Growth of Ablation Technologies by Clinical Application and Geography, 2014-2020

image001

Source: Smithers Apex

 

Ablation technologies to reach $16.8 billion

In 2013, energy-based tissue ablation tools and techniques were used in hundreds of millions of procedures required, generating an estimated $12.4 billion in cumulative global sales. These total sales are projected to register a healthy growth over the forecast to the year 2020, reaching $16.8 billion by that time.

A new report published by Smithers Apex covers the global market for energy-based tissue ablation products. See link.

Where will medicine be in 20 years?

(This question was originally posed to me on Quora.com. I initially answered this in mid 2014 and am revisiting and updating the answers now, in mid 2015.)

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, whether it is Obamacare, a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective.

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions.
    [View Aug. 2015: Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it.] 
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.
    [View Aug. 2015: Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics.] 
  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.
    [View Aug. 2015: Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines.] 
  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    [View Aug. 2015: Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, long-term and/or less costly solutions.] 

  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.
    [View Aug. 2015: It’s a double-edged sword with the human genome. As the human blueprint, It is the potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions.] 
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.
    [View Aug. 2015: The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.] 
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.
    [View Aug. 2015: By 2035, technologies such as these will have measurably reduced inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of the NOTES technology platform. A wide range of technologies across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit without collateral damage.] 
  • Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.
    [View Aug. 2015: There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits.]
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.
    [View Aug. 2015: This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.]

There will be many more unforeseen medical advances achieved within 20 years, many arising from research that may not even be imagined yet. However, the above advances are based on actual research and/or the advances that have already arisen from that research.

Medtech from incremental to quantum leap advances

Advanced medical technologies become advanced by the application of innovation that results in more effective, less costly or otherwise arguably better outcomes (including reduced risk of complications or disease recurrence) for patients, including in some cases enabling treatment when none was previously possible. It is intrinsic to every entrepreneur that the idea he/she is pursuing accomplishes this.

Manufacturers of products on the market have an imperative to either improve upon those products or make them obsolete. This imperative is manifested in a spectrum of planned innovation from simple incremental innovations to the quantum leap of a radically new approach.

There is an enormous amount of technology development, often applicable to multiple different clinical applications, that will be realized in product markets in the future. For the moment, though, I would like to look beyond “incremental improvements” or “product line extensions” or other marginal advances that serve little more than superficially addressing shortcomings of existing products on the market. I would like to look at waves of innovation coming in the short to long term that are expected to impact medtech in ways that are increasingly “radical” or represent varying orders of magnitude of improvement in results.

Three categories spanning short, mid, and long reflect what I see in medtech development. Below, I outline the nature of each and the specific examples that are or will be emerging.

Short term. With change encompassing technologies that are just sufficiently different so that they cannot simply be called incremental innovations, some short term advances often combine two or more complementary and/or synergistic technologies in new ways to advance healthcare. Examples include:

  • Image-guided surgeries to augment the surgeon’s ability to navigate complex anatomy or discern the margins of healthy versus disease tissue.
  • Natural orifice endoscopic surgery (and shift in general from invasive to interventional and intraductal procedures) to either drastically reduce or eliminate the trauma of surgical access
  • Non-invasive therapeutics (like lithotripsy, gamma knife, others) to treat disease without trauma to collateral tissues.
  • Genome-driven treatment profiling (prescreening to determine ideal patients with high probable response).
  • Personalized (custom) implants. These already exist in orthopedics, but the potential for customized implants in gastroenterology, cardiology, and many other clinical areas is wholly untapped.
  • Regenerative technologies (bone, skin, other). These technologies represent introductory markets with lowered challenge compared to more complex functional anatomy (e.g., vital organs).
  • Smart devices (implantable sensors, RFID-tagged implants, etc.) to provide data to clinicians on implant location and status or, in the extreme respond diagnostically or therapeutically to changes in the implant’s immediate environment.

Mid-term. These are new therapeutic options that are fundamentally different than those in current use for a given treatment option. These are technologies that have demonstrated high probability of being feasible in large scale use, but have not yet accumulated enough clinical data to warrant full regulatory approval.

  • Nanotech surface technologies for biocompatibility, localized treatment delivery or other advantages at the interface between patient and product.
  • Materials that adapt to changes in implant environment, to maintain pH, to release drugs, to change shape.
  • Artificial heart. A vital organ replacement that currently has demonstrated the capacity to be a bridge to transplant but has also advanced sufficiently to open the possibility of permanent replacement in the not-too-distant future.
  • Cell/device hybrids. These are organ replacements (e.g., kidney, lung, liver) performing routine function or natural organs, but configured in a device to address unresolved issues of long term function, immune response and others.
  • Artificial organs (other than heart) — closed loop glucometer/insulin pump (artificial pancreas). These are not even partial biological representations of the natural organ, but completely synthetic “organs” that intelligently regulate and maintain a steady state (e.g., blood glucose levels) by combining the necessary functions through combined, closed-loop mechanical means (an insulin pump and glucometer with the necessary algorithms or program to independently respond to changes in order to otherwise maintain a steady state.

Long-term. Orders of magnitude, quantum shift, paradigm shift or otherwise fundamentally different means to serve clinical need.

  • 3D implant printing. In a recent example, in an emergency situation a 3D implant for repair of a infant’s trachea was approved by the FDA. These implants, as in the case of the trachea repair, will most often be customized for specific patients, matching their specific anatomy and may even include their (autologous) cells. They may also be made of other materials including extracellular matrices that will stimulate natural cell migration followed eventually by bioabsorption of the original material. Depending upon type of material and complexity of the anatomy, these technologies may emerge in the near or distant future.
  • Gene therapies. Given the root cause of many diseases has a genetic component or is entirely due to a genetic defect, gene therapies will be “permanent corrections” of those defects. An enormous number of hurdles remain to be crossed before gene therapies are largely realized. These deal with delivery and permanent induction of the corrected genes into patients.
  • Stem cell therapies. The potential applications are many and the impact enormous of stem cell therapies, but while stem cell technology (whether for adult or embryonic) has made enormous strides, many challenges remain in solving the cascade of differentiation while avoiding the potential for aberrant development of these cells, sometimes to proliferative (cancerous) states.
  • “Rational” therapeutics. Whether by stem cell therapies, gene therapies or other biochemical or biological approach, “rational” therapeutics represent the consummate target for medical technology. Such therapeutics are “rational” in the sense that they perfectly address disease states (i.e., effect cures) without complication or need for recurrent intervention.

There are certainly more holes than fabric in this tapestry of short-, mid- and long-term technology innovation, but this should serve to illustrate the correlation between the sophistication of the potential medtech solution and the level of technical challenge in order to achieve each.

 

Reference reports in Ophthalmology, Coronary Stents and Tissue Engineering

MedMarket Diligence has added three previously published, comprehensive analyses of  medtech markets to its Reference Reports listings. The markets covered in the three reports are:

  • Ophthalmology Diagnostics, Devices and Drugs (see link)
  • Coronary Stents: Drug-Eluting, Bare, Bioresorbable and Others (see link)
  • Tissue Engineering, Cell Therapy and Transplantation (see link)

Termed “Reference Reports”, these detailed studies were initially completed typically within the past five years. They now serve as exceptional references to those markets, since fundamental data about each of these markets has remained largely unchanged. Such data includes:

  • Disease prevalence, incidence and trends (including credible forecasts to the present)
  • Clinical practices and trends in the management of the disease(s)
  • Industry structure including competitors (most still active today)
  • Detailed appendices on procedure data, company directories, etc.

Arguably, a least one quarter of every NEW medtech report contains background data encompassing the data listed above.  Therefore, the MedMarket Diligence reports have been priced in the single user editions at $950 each, which is roughly one quarter the price of a full report.

See links above for detailed report descriptions, tables of contents, lists of exhibits and ordering. If you have further questions, feel free to contact Patrick Driscoll at (949) 859-3401 or (toll free US) 1-866-820-1357.

See the comprehensive list of MedMarket Diligence reports at link.

 

Ablation technology regional growth to 2019

In our analysis of the global market for the spectrum of ablation technologies — Electrical, Radiation, Light, Radiofrequency, Ultrasound, Cryotherapy, Thermal (other than cryo), Microwave, and Hydromechanical — we assessed the size and growth of sales of these technologies with specificity to a large number of regions and countries:

  • U.S.A.
  • Canada
  • Brazil
  • Mexico
  • Germany
  • United Kingdom
  • France
  • Italy
  • Spain
  • BeNeLux
  • Japan
  • China
  • India
  • Australia
  • Rest of World

Below, we illustrate, ranked from low to high, the compound annual growth rates of each geography/technology combination.  This data reflects the strong trends that exist for clinical adoption and sales growth of specific technologies, driven by the unique combination of country-specific and technology-specific forces.

Source: Report #A145, MedMarket Diligence, LLC.