Medical, Surgical Sealants — Fibrin and Others

screen-shot-2016-10-26-at-2-23-29-pmFibrin is the result of the combination of solutions of thrombin and fibrinogen. This forms a clot just as in the body during the coagulation cascade. The thrombin then breaks the fibrinogen molecules into smaller bits of another blood protein, called fibrin. Fibrin molecules arrange themselves into a lattice with strands cross-linked by the blood component, Factor XIII. This resulting cross-linked net helps to stabilize the clot.

Numerous variants of fibrin sealant exist, including autologous products. Other, non-fibrin sealant types are thrombin, collagen & gelatin-based sealants.

Fibrin sealants are used in the US in a wide array of applications; they are used the most in orthopedic surgeries, where the penetration rate is thought to be 25-30%. Fibrin sealants can, however, be ineffective under wet surgical conditions. The penetration rate in other surgeries is estimated to be about 10-15%.

Fibrin-based sealants were originally made with bovine components. These components were judged to increase the risk of developing bovine spongiform encephalopathy (BSE), so second-generation commercial fibrin sealants (CSF) avoided bovine-derived materials. The antifibrinolytic tranexamic acid (TXA) was used instead of bovine aprotinin. Later, the TXA was removed, again due to safety issues. Today, Ethicon’s (JNJ) Evicel is an example of this product, which Ethicon says is the only all human, aprotinin free, fibrin sealant indicated for general hemostasis. Market growth in the sealants sector is driven by the need for improved biocompatibility and stronger sealing ability—in other words, meeting the still-unsatisfied needs of physician end-users.

The current market penetration of sealant products in the US stands at about 25% of eligible surgeries, with their largest volume of use in orthopedics.

Selected Fibrin and Other Sealant Types*

screen-shot-2016-10-26-at-2-10-21-pm

*Market status on each detailed in report S290.

Source: MedMarket Diligence, LLC; Sealants, Glues, Hemostats to 2022.

 

The Regimens for Assessing and Treating Wound Types

Wound treatment starts with diagnosis. Acute wounds are often surgically created, or dealt with in accident and emergency (A&E) settings. Diagnosis in the acute scenario usually focuses on cleanliness and tidying of the wound edges to enable securement using sutures or glue products. If major trauma has occurred, hemostats and sealants may be required. In the chronic scenario, diagnosis is a process that occurs at every treatment session. The practitioner will examine size, appearance and odor changes to the wound, and from this process determine the ideal management. In addition, it is likely that the physician will take samples to send for microbial assessment if infection becomes a concern.

Following diagnosis and assessment, treatment will be established based on known efficacy and cost of individual dressings, knowledge of the potential products that may be used, and their availability. This will be determined by reimbursement, local purchasing decisions, and resources.

For chronic wounds, treatment often involves symptoms; many products are designed to remove aesthetically unpleasant aspects of wounds such as exudates, smell, and visibility.

Management of exudates also has a wound-healing benefit. Too much exudate leads to hydrolytic damage and maceration of the tissue and surrounding skin. Too little moisture leads to drying out of the wound and cell death. As a result, many advanced wound management products have been developed to optimize the moist wound healing environment. As a huge variety of wound conditions arise, a large number of dressings has been developed to help manage the full range of circumstances that may be encountered. These include dressings made from foams, polyurethane films, alginates, hydrocolloids, and biomaterials to manage exudates, which may be present in vast quantities (perhaps as much as two liters per square meter per day). Other products are designed to moisten the wound to optimize healing (amorphous hydrogels for example).

Much of the advanced wound management market has evolved to improve exudates management in the home setting, in order to reduce the need for visits by practitioners and the associated cost.

Types and Uses of Select Wound Care Products

    
Dressing categoryProduct examplesDescriptionPotential applications
FilmHydrofilm, Release, Tegaderm, BioclusiveComes as adhesive, thin transparent polyurethane film, and as a dressing with a low adherent pad attached to the film.Clean, dry wounds, minimal exudate; also used to cover and secure underlying absorptive dressing, and on hard-to-bandage locations, such as heel.
FoamPermaFoam
PolyMem
Biatain
Polyurethane foam dressing available in sheets or in cavity filling shapes. Some foam dressing have a semipermeable, waterproof layer as the outer layer of the dressingFacilitates a moist wound environment for healing. Used to clean granulating wounds which have minimal exudate.
HydrogelHydrosorb Gel Sheet, Purilon, Aquasorb, DuoDerm, Intrasite Gel, GranugelColloids which consist of polymers that expand in water. Available in gels, sheets, hydrogel-impregnated dressings.Provides moist wound environment for cell migration, reduces pain, helps to rehydrate eschar. Used on dry, sloughy or necrotic wounds.
HydrocolloidCombiDERM, Hydrocoll, Comfeel, DuoDerm CGF Extra Thin, Granuflex, Tegasorb, Nu-DermMade of hydroactive or hydrophilic particles attached to a hydrophobic polymer. The hydrophilic particles absorb moisture from the wound, convert it to a gel at the interface with the wound. Conforms to wound surface; waterproof and bacteria proof.Gel formation at wound interface provides moist wound environment. Dry necrotic wounds, or for wounds with minimal exudate. Also used for granulating wounds.
AlginateAlgiSite, Sorbalgon Curasorb, Kaltogel, Kaltostat, SeaSorb, TegagelA natural polysaccharide derived from seaweed; available in a range of sizes, as well as in ribbons and ropes.Because highly absorbent, used for wounds with copious exudate. Can be used in rope form for packing exudative wound cavities or sinus tracts.
AntimicrobialBiatain Ag
Atrauman Ag
MediHoney
Both silver and honey are used as antimicrobial elements in dressings.Silver: Requires wound to be moderately exudative to activate the silver, in order to be effective
NPWDSNa
V.A.C. Ulta
PICO
Renasys (not in USA)
Prospera PRO series
Invia Liberty
Computerized vacuum device applies continuous or intermittent negative or sub-atmospheric pressure to the wound surface. NPWT accelerates wound healing, reduces time to wound closure. Comes in both stationary and portable versions.May be used for traumatic acute wound, open amputations, open abdomen, etc. Seems to increase burn wound perfusion. Also used in management of DFUs. Contraindicated for arterial insufficiency ulcers. Not to be used if necrotic tissue is present in over 30% of the wound.
Bioengineered Skin and Skin SubstitutesAlloDerm, AlloMax, FlexHD, DermACELL, DermaMatrix, DermaPure, Graftjacket Regenerative Tissue Matrix, PriMatrix, SurgiMend PRS, Strattice Reconstructive Tissue Matrix, Permacol, EpiFix, OASIS Wound Matrix, Apligraf, Dermagraft, Integra Dermal Regeneration Template, TransCyteBio-engineered skin and soft tissue substitutes may be derived from human tissue (autologous or allogeneic), xenographic, synthetic materials, or a composite of these materials.Burns, trauma wounds, DFUs, VLUs, pressure ulcers, postsurgical breast reconstruction, bullous diseases

Source: MedMarket Diligence, LLC; Report #S251.

In some cases, the wound may be covered by a black necrotic tissue or yellow sloughy material. These materials develop from dead cells, nucleic acid materials, and denatured proteins. In order for new tissue to be laid down, this dead material needs to be removed. It may be done using hydrolytic debridement using hydrogels that soften the necrotic tissue, or by the use of enzymes. Surgical debridement is another option, but non-surgical debridement has the advantage that it is usually less painful and can be performed with fewer materials, less expertise, and less mess. It is possible to perform non-surgical debridement in the home setting. Debridement can also be performed to selectively remove dead tissue and thus encourage repair. Enzymatic debriders have been able to command a premium price in the market, and built a sizeable share of the wound management market, particularly during the 1990s when treatment in the home environment increased as a result of reductions in hospital-based treatment. These products are described in the section on cleansers and debriders.

Occasionally healthcare practitioners put maggots to work for wound debridement. Though esthetically unpleasant, maggots are very effective debriding agents because they distinguish rigorously between dead and living tissue. Military surgeons noticed the beneficial effect of maggots on soldiers’ wounds centuries ago, but maggot debridement therapy (MDT) as it is practiced today began in the 1920s and has lately been undergoing something of a revival. The maggots used have been disinfected during the egg stage so that they do not carry bacteria into the wound. The larvae preferentially consume dead tissue, they excrete an antibacterial agent, and they stimulate wound healing.

At the other end of the technological scale are skin substitutes, which have been developed to help in the management of extensive wounds such as burns. Autologous skin grafting is a well-established therapeutic technique; postage-stamp-sized sections of healthy skin are cultured and grown in vitro, then placed over the raw wound surface to serve as a focus for re-epithelialization. However, this process takes time; the wound is highly vulnerable to infection while the skin graft is being grown. A number of companies have developed alternatives in the form of synthetic skin substitutes. These are described further in the next section of the report.

A number of products have also been developed to deal with sloughy and infected wounds. These often incorporate antimicrobial agents. Often, infected wounds have a very unpleasant odor; a range of odor control dressings has arisen to deal with this.

Once wounds begin to heal, the amount of exudate starts to decrease. Some dressing products preserve moisture but are also non-adhesive, so that the dressing does not adhere to the new epithelializing skin. These products are called non-adherent dressings and include a range of tulle dressings, which usually consist of a loose weave of non-adherent fabric designed to allow exudates to pass through the gaps. A subgroup of dressings is designed to keep the skin moist in order to reduce scarring after healing.

For wounds that do not appear to be healing, a number of companies have explored the potential to add growth factors and cells to promote and maintain healing. In addition, companies have attempted to use energy sources to accelerate wound healing, and these are described in the section on physical treatments. The main example of physical treatment is the use of devices which apply negative pressure over the wound and have been shown to dramatically shorten the healing of diabetic ulcers and other chronic wounds.

Often, a dressing will serve more than one purpose. Therefore, it is difficult to generalize and collect only dressings that serve one purpose into a single category. For example, Systagenix’s Actisorb Plus (Systagenix is now owned by Acelity) is a woven, low-adherent odor control antimicrobial dressing designed to optimize moist wound healing through its exudates handling properties.


From, Worldwide Wound Management, Forecast to 2024; MedMarket Diligence, LLC. 

Wound management practice patterns, products by wound type

From Report #S251, “Wound Management to 2024”.

Surgical wounds account for the vast majority of skin injuries. We estimate that there are approximately 100 million surgical incisions per year, growing at 3.1% CAGR, that require some wound management treatment. About 16 million operative procedures were performed in acute care hospitals in the USA. Approximately 80% of surgical incisions use some form of closure product: sutures, staples, and tapes. Many employ hemostasis products, and use fabric bandages and surgical dressings.

Surgical procedures generate a preponderance of acute wounds with uneventful healing and a lower number of chronic wounds, such as those generated by wound dehiscence or postoperative infection. Surgical wounds are most often closed by primary intention, where the two sides across the incision line are brought close and mechanically held together. Overall the severity and size of surgical wounds will continue to decrease as a result of the continuing trend toward minimally invasive surgery.

Surgical wounds that involve substantial tissue loss or may be infected are allowed to heal by secondary intention where the wound is left open under dressings and allowed to fill by granulation and close by epithelialization. Some surgical wounds may be closed through delayed primary intention where they are left open until such time as it is felt it is safe to suture or glue the wound closed.

Traumatic wounds occur at the rate of 50 million or more every year worldwide. They require cleansing and treatment with low-adherent dressings to cover the wound, prevent infection, and allow healing by primary intention. Lacerations are a specific type of trauma wound that are generally minor in nature and require cleansing and dressing for a shorter period. There are approximately 20 million lacerations a year as a result of cuts and grazes; they can usually be treated in the doctors’ surgery, outpatient medical center or hospital A&E departments.

Burn wounds can be divided into minor burns, medically treated, and hospitalized cases. Outpatient burn wounds are often treated at home, at the doctor’s surgery, or at outpatient clinics. As a result, a large number of these wounds never enter the formal health service system. According to the World Health Organization (WHO), globally about 11 million people are burned each year severely enough to require medical treatment. We estimate that approximately 3.5 million burns in this category do enter the outpatient health service system and receive some level of medical attention. In countries with more developed medical systems, these burns are treated using hydrogels and advanced wound care products, and they may even be treated with consumer-based products for wound healing.

Medically treated burn wounds usually receive more informed care to remove heat from the tissue, maintain hydration, and prevent infection. Advanced wound care products are used for these wounds. There are approximately 6.0 million burns such as this that are treated medically every year.

Hospitalized burn wounds are rarer and require more advanced and expensive care. These victims require significant care, nutrition, debridement, tissue grafting and often tissue engineering where available. They also require significant follow-up care and rehabilitation to mobilize new tissue, and physiotherapy to address changes in physiology. Growth rates within the burns categories are approximately 1.0% per annum.

Chronic wounds generally take longer to heal, and care is enormously variable, as is the time to heal. There are approximately 7.4 million pressure ulcers in the world that require treatment every year. Many chronic wounds around the world are treated sub-optimally with general wound care products designed to cover and absorb some exudates. The optimal treatment for these wounds is to receive advanced wound management products and appropriate care to address the underlying defect that has caused the chronic wound; in the case of pressure ulcers a number of advanced devices exist to reduce pressure for patients. There are approximately 9.7 million venous ulcers, and approximately 10.0 million diabetic ulcers in the world requiring treatment. Chronic wounds are growing in incidence due to the growing age of the population, and the growth is also due to increasing awareness and improved diagnosis. Growth rates for pressure and venous ulcers are 6%–7% in the developed world as a result of these factors.

Diabetic ulcers are growing more rapidly due mainly to increased incidence of both Type I and maturity-onset diabetes in the developed countries around the world. The prevalence of diabetic ulcers is rising at 9% annually. Every year 5% of diabetics develop foot ulcers and 1% require amputation. The recurrence rate of diabetic foot ulcers is 66%; the amputation rate rises to 12% with subsequent ulcerations. At present, this pool of patients is growing faster than the new technologies are reducing the incidence of wounds by healing them.

Wound management products are also used for a number of other conditions including amputations, carcinomas, melanomas, and other complicated skin cancers, all of which are on the increase.

A significant feature of all wounds is the likelihood of pathological infection occurring. Surgical wounds are no exception, and average levels of infection of surgical wounds are in the range of 7%–10%, depending upon the procedure. These infections can be prevented by appropriate cleanliness, surgical discipline and skill, wound care therapy, and antibiotic prophylaxis. Infections usually lead to more extensive wound care time, the use of more expensive products and drugs, significantly increased therapist time, and increased morbidity and rehabilitation time. A large number of wounds will also be sutured to accelerate closure, and a proportion of these will undergo dehiscence and require aftercare for healing to occur.

For the detailed coverage of wounds, wound management products, companies, and markets, see report #S251, “Worldwide Wound Management to 2024”.

List of high growth medtech products

Below is a table with a list of the market segments demonstrating greater than 10% compound annual growth rate for the associated region through 2022, drawn from our reports on tissue engineering & cell therapy, wound management, ablation technologies, stroke, peripheral stents, and sealants/glues/hemostats. Products with over 10% CAGR in sales are shown in descending order of CAGR.

RankProductTopicRegion
1General, gastrointestinal, ob/gyn, othertissue/cellWW
2Ophthalmologytissue/cellWW
3Organ Replacement/ Repairtissue/cellWW
4Urologicaltissue/cellWW
5Neurologicaltissue/cellWW
6Autoimmune Diseasestissue/cellWW
7CV/ Vasculartissue/cellWW
8Bioengineered skin and skin substituteswoundRest of A/P
9Peripheral drug-eluting stents (A/P)peripheral interventionalA/P
10Peripheral drug eluting stentsperipheral interventionalRoW
11Peripheral drug-eluting stents (US)peripheral interventionalUS
12Negative pressure wound therapywoundGermany
13Hydrocolloid dressingswoundRest of A/P
14Cancertissue/cellWW
15Foam dressingswoundRest of A/P
16Growth factorswoundRest of A/P
17Alginate dressingswoundRest of A/P
18Dentaltissue/cellWW
19Bioengineered skin and skin substituteswoundJapan
20Hemostatssealants, glues, hemostatsA/P
21Skin/ Integumentarytissue/cellWW
22Bioengineered skin and skin substitutessealants, glues, hemostatsUS
23Bioengineered skin and skin substitutessealants, glues, hemostatsWW
24Film dressingswoundRest of A/P
25Surgical sealantssealants, glues, hemostatsA/P
26Hydrogel dressingswoundRest of A/P
27TAA Stent graftsperipheral interventionalA/P
28Negative pressure wound therapywoundRoW
29Biological gluessealants, glues, hemostatsA/P
30FoamwoundRoW
31HydrocolloidwoundGermany
32AAA Stent graftsperipheral interventionalA/P
33Cerebral thrombectomy systemsstrokeA/P
34High-strength medical gluessealants, glues, hemostatsA/P
35Carotid artery stenting systemsstrokeA/P
36Cardiac RF ablation productsablationA/P
37Alginate dressingswoundGermany
38Peripheral venous stentsperipheral interventionalA/P
39Cerebral thrombectomy systemsstrokeUS
40Left atrial appendage closure systemsstrokeA/P
41Cyanoacrylate gluessealants, glues, hemostatsA/P
42Foam dressingswoundRest of EU
43Foam dressingswoundKorea
44Cryoablation cardiac & vascular productsablationA/P
45Bioengineered skin and skin substituteswoundGermany
46Thrombin, collagen & gelatin-based sealantssealants, glues, hemostatsA/P
47Cardiac RF ablation productsablationRoW
48Bioengineered skin and skin substituteswoundRoW
49Microwave oncologic ablation productsablationA/P

Note source links: Tissue/Cell, Wound, Sealants/Glues/Hemostats, Peripheral Stents, Stroke, Ablation.

Source: MedMarket Diligence Reports

Where will medicine be in 2035?

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, in the U.S., whether Obamacare persists (most likely) or is replaced with a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective. 

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions. Cancer and genomics, in particular, has been a lucrative study (see The Cancer Genome Atlas). Immunotherapy developments are also expected to be part of many oncology solutions. Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it. 
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.

Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics.

  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.

Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines.

  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, long-term and/or less costly solutions.
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.

    As the human genome is the engineering plans for the human body, it is a potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions –> Case in point, the recent emergence of the gene-editing technology, CRISPR, has set the stage for practical applications to correct genetically-based conditions.
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma, including pharmacogenomics to predict drug response. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.

    By 2035, technologies such as these will measurably reduce inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of minimally invasive technologies (e.g., especially the NOTES technology platform). A wide range of other technologies (e.g., gamma knife, minimally invasive surgery/intervention, etc.) across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit while minimizing or eliminating collateral damage.

Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits.

  • Personalized medicine. Perfect matches between a condition and its treatment are the goal of personalized medicine, since patient-to-patient variation can reduce the efficacy of off-the-shelf treatment. The thinking behind gender-specific joint replacement has led to custom-printed 3D implants. The use of personalized medicine will also be manifested by testing to reveal potential emerging diseases or conditions, whose symptoms may be ameliorated or prevented by intervention before onset.
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.Other technologies being developed aggressively now will have an impact over the next twenty years, including medical/surgical robots (or even biobots), neurotechnologies to diagnose, monitor, and treat a wide range of conditions (e.g., spinal cord injury, Alzheimer’s, Parkinson’s etc.).

The breadth and depth of advances in medicine over the next 20 years will be extraordinary, since many doors have been recently opened as a result of advances in genetics, cell biology, materials science, systems biology and others — with the collective advances further stimulating both learning and new product development. 


See the 2016 report #290, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.”

Six Key Trends in Sealants, Glues, Hemostats Markets to 2022

From July 2016 published Report #S290.

Here are six key trends we see in the global market for surgical sealants, glues, and hemostats:

  1. Aggressive development of products (including by universities, startups, established competitors), regulatory approvals, and new product introductions continues in the U.S., Europe, and Asia/Pacific (mostly Japan, Korea) to satisfy the growing volume of surgical procedures globally.
  2. Rapid adoption of sealants, glues, hemostats in China will drive much of the global market for these products, but other nations in the region are also big consumers, with more of the potential caseload already tapped than the rising economic China giant. Japan is a big developer and user of wound product consumer. Per capital demand is also higher in some countries like Japan.
  3. Flattening markets in the U.S. and Europe (where home-based manufacturers are looking more at emerging markets), with Europe in particular focused intently on lowering healthcare costs.
  4. The M&A, and deal-making that has taken place over the past few years (Bristol-Myers Squibb, The Medicines Company, Cohera Medical, Medafor, CR Bard, Tenaxis, Mallinckrodt, Xcede Technologies, etc.) will continue as market penetration turns to consolidation.
  5. Growing development on two fronts: (1) clinical specialty and/or application specific product formulation, and (2) all purpose products that provide faster sealing, hemostasis, or closure for general wound applications for internal and external use.
  6. Bioglues already hold the lead in global medical glue sales, and more are being developed, but there are also numerous biologically-inspired, though not -derived, glues in the starting blocks that will displace bioglue shares. Nanotech also has its tiny fingers in this pie, as well.

See Report #S290, “Worldwide Sealants, Glues, and Hemostats Markets, 2015-2022”.

The Demand for Sealants, Glues, and Hemostats in 2016

The following is drawn from “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.” Report #S290.

The need for surgical sealants, glues and hemostats is directly related to the clinical caseload and procedure volumes, as well as to the adoption of these products for multiple uses, such as the use of one product for sealing, hemostasis and anti-adhesion. It is fair to say that use of these products has become routine in the surgical suite and in other clinical locations. Procedure volumes are in turn driven by demographic forces, including global aging populations, while regulatory changes will continue to influence uptake of these products.

wound-prevalance

Source: MedMarket Diligence, LLC; Report #S290.

Medical Sealants

Fibrin sealants are made of a combination of thrombin and fibrinogen. These sealants may be sprayed on the bleeding surface, or applied using a patch. Surgical sealants might be made of glutaraldehyde and bovine serum albumin, polyethylene glycol polymers, and cyanoacrylates.

Sealants are most often used to stop bleeding over a large area. If the surgeon wishes to fasten down a flap without using sutures, or in addition to using sutures, then the product used is usually a medical glue.

Hemostatic Products

The surgeon and the perioperative nurse have a variety of hemostats from which to choose, as they are not all alike in their applications and efficacy. Selection of the most appropriate hemostat requires training and experience, and can affect the clinical outcome, as well as decrease treatment costs. Some of the factors that enter into the decision-making process include the size of the wound, the amount of hemorrhaging, potential adverse effects, whether the procedure is MIS or open surgery, and others.

Active hemostats contain thrombin products which may be derived from several sources, such as bovine pooled plasma purification, human pooled plasma purification, or through human recombinant manufacturing processes. Flowable-type hemostats are made of a granular bovine or porcine gelatin that is combined with saline or reconstituted thrombin, forming a flowable putty that may be applied to the bleeding area.

Medical Glues

Sealants and glues are terms which are often used interchangeably, which can be confusing. In this report, a medical glue is defined as a product used to bond two surfaces together securely. Surgeons are increasingly reaching for medical glues to either help secure a suture line, or to replace sutures entirely in the repair of soft tissues. Medical glues are also utilized in repairing bone fractures, especially for highly comminuted fractures that often involve many small fragments. This helps to spread out the force-bearing surface, rather than focusing weight-bearing on spots where a pin has been inserted.

Thus, the surgeon has a fairly wide array of products from which to choose. The choice of which surgical hemostat or sealant to use depends on several factors, including the procedure being conducted, the type of bleeding, severity of the hemorrhage, the surgeon’s experience with the products, the surgeon’s preference, the price of the product and availability at the time of surgery. For example, a product which has a long shelf life and does not require refrigeration or other special storage, and which requires no special preparation, usually holds advantages over a product which must be mixed before use, or held in a refrigerator during storage, then allowed to warm up to room temperature before use.

 

USA and Asia/Pacific Size Versus Growth in Sealants, Glues, Hemostats

The market dynamics in Asia/Pacific stand apart from those in the U.S. In the case of surgical sealants, glues, and hemostats, what stands out is the Size versus Growth metric.

Much of the potential in China, in particular, remains untapped (low volume, high growth), while in the U.S., these markets are more well established and, therefore, more penetrated.

Below are the size/growth “bubbles” for, alternating, the U.S. and Asia/Pacific.

output_dYHN2K

Source: MedMarket Diligence, LLC; Report #S290.

What is the ideal wound product?

The previously accepted wisdom was that a wound healed best when it was kept as dry as possible. In 1962, George Winter, a British-born physician, published his ground-breaking wound care research. His paper, (Nature 193:293. 1962), entitled, “Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig,” demonstrated that wounds kept moist healed faster than those exposed to the air or covered with a traditional dressing and kept dry. Dr. Winter’s work began the development of modern wound dressings which are used to promote moist wound healing.

Natural skin is considered the ideal wound dressing, and therefore wound dressings have been designed to try to reproduce the advantages of natural skin. Today, experts feel that a wound dressing should have several characteristics if it is to serve its purpose. A wound dressing should:

  • Provide the optimal moisture needs for the particular wound
  • Have the capacity to provide thermal insulation, gaseous exchange, and to help drainage and debris removal, which promotes tissue reconstruction
  • Be biocompatible without causing any allergic or immune response reaction
  • Protect the wound from secondary infections
  • Be easily removable without causing any trauma to the delicate healing tissues.

There are hundreds of dressings to choose from, but they all fall into one of a few categories. The healthcare provider will select a dressing by category, according to availability and familiarity of using that particular dressing.

Occlusive dressings are those which are air- and water-tight. An occlusive dressing is frequently made with some kind of waxy coating to ensure a totally water-tight bandage. It may also consist of a thin sheet of plastic affixed to the skin with tape. An occlusive dressing retains moisture, heat, body fluids and medication in the wound. There are several types of occlusive dressings, which are discussed below.

It should be remembered that proper wound care, especially of a chronic wound, is a complex process, as much art as science; a trained healthcare provider assesses the wound as it goes through various stages, and applies the appropriate wound dressings as the need arises. Unfortunately, the most appropriate dressing is not always used, due perhaps to confusion around which type of dressing to apply, or because certain dressings—especially advanced dressings—either may not be available in the facility, or may not be reimbursed by the country’s healthcare system, or may simply be too expensive. This remains true even in some of the developed countries.

The following table summarizes potential applications for various types of wound care products, with selected examples. This summary is meant as a guideline and an illustration of the fact that different dressing types may find use in various types of wounds. In addition, as a wound heals, it may need a different type of dressing. Here again the wound care professional’s judgment and training come into play.

Dressing categoryProduct examplesDescriptionPotential applications
FilmHydrofilm, Release, Tegaderm, BioclusiveComes as adhesive, thin transparent polyurethane film, and as a dressing with a low adherent pad attached to the film.Clean, dry wounds, minimal exudate; also used to cover and secure underlying absorptive dressing, and on hard-to-bandage locations, such as heel.
FoamPermaFoam, PolyMem, BiatainPolyurethane foam dressing available in sheets or in cavity filling shapes. Some foam dressing have a semipermeable, waterproof layer as the outer layer of the dressingFacilitates a moist wound environment for healing. Used to clean granulating wounds which have minimal exudate.
HydrogelHydrosorb Gel Sheet, Purilon, Aquasorb, DuoDerm, Intrasite Gel, Granugel,Colloids which consist of polymers that expand in water. Available in gels, sheets, hydrogel-impregnated dressings.Provides moist wound environment for cell migration, reduces pain, helps to rehydrate eschar. Used on dry, sloughy or necrotic wounds.
HydrocolloidCombiDERM, Hydrocoll, Comfeel, DuoDerm CGF Extra Thin, Granuflex, TegasorbÕ Nu-DermMade of hydroactive or hydrophilic particles attached to a hydrophobic polymer. The hydrophilic particles absorb moisture from the wound, convert it to a gel at the interface with the wound. Conforms to wound surface; waterproof and bacteria proof.Gel formation at wound interface provides moist wound environment. Dry necrotic wounds, or for wounds with minimal exudate. Also used for granulating wounds.
AlginateAlgiSite, Sorbalgon Curasorb, Kaltogel, Kaltostat, SeaSorb, TegagelA natural polysaccharide derived from seaweed; available in a range of sizes, as well as in ribbons and ropes.Because highly absorbent, used for wounds with copious exudate. Can be used in rope form for packing exudative wound cavities or sinus tracts.
AntimicrobialBiatain Ag, Atrauman Ag, MediHoneyBoth silver and honey are used as antimicrobial elements in dressings.Silver: Requires wound to be moderately exudative to activate the silver, in order to be effective
NPWDSNaP, V.A.C. Ulta, PICO, Renasys (not in USA), Prospera PRO series, Invia LibertyComputerized vacuum device applies continuous or intermittent negative or sub-atmospheric pressure to the wound surface. NPWT accelerates wound healing, reduces time to wound closure. Comes in both stationary and portable versions.May be used for traumatic acute wound, open amputations, open abdomen, etc. Seems to increase burn wound perfusion. Also used in management of DFUs. Contraindicated for arterial insufficiency ulcers. Not to be used if necrotic tissue is present in over 30% of the wound.
Bioengineered Skin and Skin SubstitutesAlloDerm, AlloMax, FlexHD, DermACELL, DermaMatrix, DermaPure, Graftjacket Regenerative Tissue Matrix, PriMatrix, SurgiMend PRS, Strattice Reconstructive Tissue Matrix, Permacol, EpiFix, OASIS Wound Matrix, Apligraf, Dermagraft, Integra Dermal Regeneration Template, TransCyteBio-engineered skin and soft tissue substitutes may be derived from human tissue (autologous or allogeneic), xenographic, synthetic materials, or a composite of these materials.Burns, trauma wounds, DFUs, VLUs, pressure ulcers, postsurgical breast reconstruction, bullous diseases

Source: MedMarket Diligence, LLC; Report #S251.

Growth in Advance Wound Care Product Revenues, 2014 to 2024

Even excluding the three traditional wound care dressing segments, the advanced wound care market is enormous — over the next ten years, it will grow at a compound annual growth rate of at least 7.7%, and is forecast to reach nearly $16 billion by 2024. This market is being driven by several inter-related factors: the increasing percentage of the aged (65years old and over) in country populations, the fact that people are living longer, obesity, the virtually epidemic rise of Type 2 diabetes, government policies intended to curb healthcare spending, and an increasingly sedentary population. The latter trend is seen especially in developed countries, but is also on the rise in less-developed countries as their economic standing improves and the middle class grows in numbers.

Certain product segments are forecast to have stronger growth than others. Sales of bioengineered skin & skin substitutes for wound care will increase at a CAGR of at least 15%, while sales of foam and hydrocolloid dressings will be growing at high single-digit rates, respectively.

Advance Wound Care Product Revenues, 2014 to 2024

Wound 2014 and 2024

Source: MedMarket Diligence, LLC; Report #S251.