New Technologies Under Development at Medtech Startups, August 2014

Below is a list of the technologies under development at newly identified medtech startups and included in the Medtech Startups Database.

  • Technology for the repair of rotator cuff tears.
  • Technologies for intravenous cannulation and phlebotomy, and an otorhinoscope.
  • Implant for the treatment of urinary incontinence.
  • LED (light) treatment of acute, dry macular degeneration.
  • Esophageal cooling device to manage patient temperature.
  • Surgical robotics.
  • Patient positioning system for orthopedic surgery.
  • Device to treat macular degeneration by delivering microcurrent to the eye.

For a historical listing of medtech startup technologies included in the database, see link.

Glucose monitoring research drives more promises than answers

If I had a nickel for every headline like this that ultimately failed, like the technology, to actually achieve the promise, I would be on a tropical beach sipping pina coladas:

“Glucose monitoring for diabetes made easy with a blood-less method” (link)

Technologies in development for less-invasive or non-invasive glucose monitoring are legion, and many are very promising, but you can’t fill out a deposit slip with these promises. Frequently, such alternatives are based on the premise of quantifying blood glucose by sensitively detecting glucose in other fluids (interstitial fluid, tears, saliva, urine, etc.) that do not require the use of lancets to draw blood. However, despite their sensitivity and other sophistication in detecting minute quantities of glucose, their “arm’s length” to actual blood glucose compounds the challenge by requiring that the test reproducibly correlate the sample values with actual, current blood glucose levels.

The challenge stands unanswered, while the burgeoning population of endlessly finger-pricked diabetics remains painfully unsatisfied.

As a practical reality, continuous blood glucose monitors like those from Dexcom and Medtronic offer far more to the diabetic population, not only by avoiding finger pricks but also by revealing the patterns in blood glucose levels over time as a result of activity, carbohydrate intake, insulin bolus, insulin basal rate, stress and countless other patient-specific determinants.

Where will medicine be 20 years from now?

My answer (edited) from this question on Quora.

I can speculate on this from the perspective of clinical practice and medical technology, but it should be first noted that another, important determinant of “where medicine will be” is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries and the demands they put on healthcare delivery work directly against quality of care. So, whether it is Obamacare, a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective.

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions.
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.
  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.
  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice translumenal endoscopic surgery will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.
  • Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.


There will be many more unforeseen medical advances achieved within 20 years, many arising from research that may not even be imagined yet. However, the above advances are based on actual research and/or the advances that have already arisen from that research.

Product types, uses in wound management

The sheer number of products in wound management provides many options for the clinician in deciding what is suitable per patient, but the choices also set up a challenge. Considering dressings alone, clinicians must match the balance of the properties of each wound and its needs for healing with the right type of dressing. Although there are hundreds of dressings to choose from, all dressings fall into a few select categories. Dressings within a particular category can then be chosen according to availability and familiarity.

Composite, or combination dressings may be used as the primary dressing or as a secondary dressing. These dressings may be made from any combination of dressing types, but are merely a combination of a moisture retentive dressing and a gauze dressing. Use on: a wide variety of wounds, depending on the dressing. These products are widely available and simple for clinicians to use.  However, these may be more expensive and difficult to store, affording less choice/flexibility in indications for use.

Other dressings available on the market include dressings containing silver or other antimicrobials, charcoal dressings and biosynthetic dressings.

Traditional gauze dressings are the least occlusive type of dressing and would lie at one extreme of the continuum. Then, in order of increasing occlusion would follow calcium alginate, impregnated gauze, semi-permeable film, semi-permeable foam, hydrogels, hydrocolloids, and finally latex as the most occlusive dressing type.

Most wounds can be managed the use of different dressing types, even multiple types as the wound slowly heals and demands different conditions for optimal healing. However, due to patient status (e.g., age, circulatory status, presence of concomitant conditions like diabetes, etc.) a growing number of wounds become non-healing or simply chronic, demanding more sophisticated intervention to be healed (see link for discussion of the factors affecting wound healing). For this reason, a range of new technologies have been introduced, with others in development, to address the deficiencies in traditional wound management approaches.

The range of wound products that are in use or under development are illustrated in the following table.

Wound Management Product Types

Screen Shot 2014-05-06 at 9.03.45 AM
Source: MedMarket Diligence, LLC; Report #S249.

The increasing problem of chronic wounds, and their medtech solutions

Wounds have many different sources, etiologies and forms and, therefore, demand a range of approaches. By virtue of these differences, they have considerably different costs. At the top of the list of wound culprits driving up cost is the category of chronic wounds. Simply put, these wounds are very slow to heal due to poor circulation at the site (e.g., decubitus stasis, or pressure, ulcers), concomitant health issues (diabetes) and the difficulty in changing the local environment toward one with conditions more conducive to the healing process.

Chronic wounds are not the most common — that is a category represented by surgical wounds, in which the wound has been created medically or surgically in order to excise or otherwise manage diseased tissue. But surgical wounds, traumatic wounds and lacerations are by their nature acute and, especially for surgical wounds, can be surgically managed to create clean wound edges, good vascularization and other conditions that accelerate healing. Therefore, while the volume of surgical and traumatic wounds and lacerations is significant, their costs are manageable and their growth is unremarkable.

But the costs of chronic wounds are higher due to both the types of different products required and the length of time required for those products to be used. Moreover, given the association of chronic wounds with conditions that are growing in prevalence due to increasing incidence of obesity, diabetes and other conditions, combined with an aging population that is increasingly sedentary, the prevalence of chronic wounds is shifting the balance among wound types. Below is the balance of wound types by prevalence worldwide in 2011, followed by the projected balance of wound types in 2025.

Worldwide Share of Wound Prevalence By Type, 2011

Screen Shot 2014-03-25 at 9.13.44 AM

 

Source: MedMarket Diligence, LLC; Report #S190 and Report #S249.

 

Worldwide Share of Wound Prevalence By Type, 2025

Screen Shot 2014-03-25 at 9.14.16 AM

 

Source: MedMarket Diligence, LLC; Report #S190 and Report #S249.

Surgical wounds offer the potential for use of devices which can ensure hemostasis, prevent internal adhesions and anastomoses, secure soft tissue, and close the skin. Traumatic wounds also offer potential for skin closure products and for hemostats, and adhesion prevention during post-trauma surgery. New wound-covering sealant products may also offer potential for treatment of cuts, grazes, and burns.

Chronic wounds are generally not amenable to treatment by adhesives, sealants and hemostats unless the wound has either been debrided to a sterile bleeding surface (in which case it becomes like a surgical wound), or the product offers some stimulant activity. Many hemostats exhibit some inflammatory and cytokinetic activity, which has been associated with accelerated healing. However, this inflammatory activity has also been known to burn the patient’s skin. Chronic wounds are instead dealt with often by a combination of debridement, frequent dressing changes, products to address local vascular circulation and pressure (negative and positive) and others. Progress is being made in reducing the associated healing times, but a large opportunity remains.

Medtech from incremental to quantum leap advances

Advanced medical technologies become advanced by the application of innovation that results in more effective, less costly or otherwise arguably better outcomes (including reduced risk of complications or disease recurrence) for patients, including in some cases enabling treatment when none was previously possible. It is intrinsic to every entrepreneur that the idea he/she is pursuing accomplishes this.

Manufacturers of products on the market have an imperative to either improve upon those products or make them obsolete. This imperative is manifested in a spectrum of planned innovation from simple incremental innovations to the quantum leap of a radically new approach.

There is an enormous amount of technology development, often applicable to multiple different clinical applications, that will be realized in product markets in the future. For the moment, though, I would like to look beyond “incremental improvements” or “product line extensions” or other marginal advances that serve little more than superficially addressing shortcomings of existing products on the market. I would like to look at waves of innovation coming in the short to long term that are expected to impact medtech in ways that are increasingly “radical” or represent varying orders of magnitude of improvement in results.

Three categories spanning short, mid, and long reflect what I see in medtech development. Below, I outline the nature of each and the specific examples that are or will be emerging.

Short term. With change encompassing technologies that are just sufficiently different so that they cannot simply be called incremental innovations, some short term advances often combine two or more complementary and/or synergistic technologies in new ways to advance healthcare. Examples include:

  • Image-guided surgeries to augment the surgeon’s ability to navigate complex anatomy or discern the margins of healthy versus disease tissue.
  • Natural orifice endoscopic surgery (and shift in general from invasive to interventional and intraductal procedures) to either drastically reduce or eliminate the trauma of surgical access
  • Non-invasive therapeutics (like lithotripsy, gamma knife, others) to treat disease without trauma to collateral tissues.
  • Genome-driven treatment profiling (prescreening to determine ideal patients with high probable response).
  • Personalized (custom) implants. These already exist in orthopedics, but the potential for customized implants in gastroenterology, cardiology, and many other clinical areas is wholly untapped.
  • Regenerative technologies (bone, skin, other). These technologies represent introductory markets with lowered challenge compared to more complex functional anatomy (e.g., vital organs).
  • Smart devices (implantable sensors, RFID-tagged implants, etc.) to provide data to clinicians on implant location and status or, in the extreme respond diagnostically or therapeutically to changes in the implant’s immediate environment.

Mid-term. These are new therapeutic options that are fundamentally different than those in current use for a given treatment option. These are technologies that have demonstrated high probability of being feasible in large scale use, but have not yet accumulated enough clinical data to warrant full regulatory approval.

  • Nanotech surface technologies for biocompatibility, localized treatment delivery or other advantages at the interface between patient and product.
  • Materials that adapt to changes in implant environment, to maintain pH, to release drugs, to change shape.
  • Artificial heart. A vital organ replacement that currently has demonstrated the capacity to be a bridge to transplant but has also advanced sufficiently to open the possibility of permanent replacement in the not-too-distant future.
  • Cell/device hybrids. These are organ replacements (e.g., kidney, lung, liver) performing routine function or natural organs, but configured in a device to address unresolved issues of long term function, immune response and others.
  • Artificial organs (other than heart) — closed loop glucometer/insulin pump (artificial pancreas). These are not even partial biological representations of the natural organ, but completely synthetic “organs” that intelligently regulate and maintain a steady state (e.g., blood glucose levels) by combining the necessary functions through combined, closed-loop mechanical means (an insulin pump and glucometer with the necessary algorithms or program to independently respond to changes in order to otherwise maintain a steady state.

Long-term. Orders of magnitude, quantum shift, paradigm shift or otherwise fundamentally different means to serve clinical need.

  • 3D implant printing. In a recent example, in an emergency situation a 3D implant for repair of a infant’s trachea was approved by the FDA. These implants, as in the case of the trachea repair, will most often be customized for specific patients, matching their specific anatomy and may even include their (autologous) cells. They may also be made of other materials including extracellular matrices that will stimulate natural cell migration followed eventually by bioabsorption of the original material. Depending upon type of material and complexity of the anatomy, these technologies may emerge in the near or distant future.
  • Gene therapies. Given the root cause of many diseases has a genetic component or is entirely due to a genetic defect, gene therapies will be “permanent corrections” of those defects. An enormous number of hurdles remain to be crossed before gene therapies are largely realized. These deal with delivery and permanent induction of the corrected genes into patients.
  • Stem cell therapies. The potential applications are many and the impact enormous of stem cell therapies, but while stem cell technology (whether for adult or embryonic) has made enormous strides, many challenges remain in solving the cascade of differentiation while avoiding the potential for aberrant development of these cells, sometimes to proliferative (cancerous) states.
  • “Rational” therapeutics. Whether by stem cell therapies, gene therapies or other biochemical or biological approach, “rational” therapeutics represent the consummate target for medical technology. Such therapeutics are “rational” in the sense that they perfectly address disease states (i.e., effect cures) without complication or need for recurrent intervention.

There are certainly more holes than fabric in this tapestry of short-, mid- and long-term technology innovation, but this should serve to illustrate the correlation between the sophistication of the potential medtech solution and the level of technical challenge in order to achieve each.

 

Reference reports in Ophthalmology, Coronary Stents and Tissue Engineering

MedMarket Diligence has added three previously published, comprehensive analyses of  medtech markets to its Reference Reports listings. The markets covered in the three reports are:

  • Ophthalmology Diagnostics, Devices and Drugs (see link)
  • Coronary Stents: Drug-Eluting, Bare, Bioresorbable and Others (see link)
  • Tissue Engineering, Cell Therapy and Transplantation (see link)

Termed “Reference Reports”, these detailed studies were initially completed typically within the past five years. They now serve as exceptional references to those markets, since fundamental data about each of these markets has remained largely unchanged. Such data includes:

  • Disease prevalence, incidence and trends (including credible forecasts to the present)
  • Clinical practices and trends in the management of the disease(s)
  • Industry structure including competitors (most still active today)
  • Detailed appendices on procedure data, company directories, etc.

Arguably, a least one quarter of every NEW medtech report contains background data encompassing the data listed above.  Therefore, the MedMarket Diligence reports have been priced in the single user editions at $950 each, which is roughly one quarter the price of a full report.

See links above for detailed report descriptions, tables of contents, lists of exhibits and ordering. If you have further questions, feel free to contact Patrick Driscoll at (949) 859-3401 or (toll free US) 1-866-820-1357.

See the comprehensive list of MedMarket Diligence reports at link.