Category Archives: patient management

Where will medicine be 20 years from now?

My answer from this question on Quora.

I can answer this question, at least speculatively, from the perspective of clinical practice and medical technology. The other side of “where medicine will be” is the question of healthcare delivery systems, reimbursement, etc. To get that part of it out of the way, it is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries and the demands they put on healthcare delivery work directly against quality of care. So, whether it is Obamacare, a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective.

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions.
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.
  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.
  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice translumenal endoscopic surgery will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.
  • Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.


There will be many more unforeseen medical advances achieved within 20 years, many arising from research that may not even be imagined yet. However, the above advances are based on actual research and/or the advances that have already arisen from that research.

The increasing problem of chronic wounds, and their medtech solutions

Wounds have many different sources, etiologies and forms and, therefore, demand a range of approaches. By virtue of these differences, they have considerably different costs. At the top of the list of wound culprits driving up cost is the category of chronic wounds. Simply put, these wounds are very slow to heal due to poor circulation at the site (e.g., decubitus stasis, or pressure, ulcers), concomitant health issues (diabetes) and the difficulty in changing the local environment toward one with conditions more conducive to the healing process.

Chronic wounds are not the most common — that is a category represented by surgical wounds, in which the wound has been created medically or surgically in order to excise or otherwise manage diseased tissue. But surgical wounds, traumatic wounds and lacerations are by their nature acute and, especially for surgical wounds, can be surgically managed to create clean wound edges, good vascularization and other conditions that accelerate healing. Therefore, while the volume of surgical and traumatic wounds and lacerations is significant, their costs are manageable and their growth is unremarkable.

But the costs of chronic wounds are higher due to both the types of different products required and the length of time required for those products to be used. Moreover, given the association of chronic wounds with conditions that are growing in prevalence due to increasing incidence of obesity, diabetes and other conditions, combined with an aging population that is increasingly sedentary, the prevalence of chronic wounds is shifting the balance among wound types. Below is the balance of wound types by prevalence worldwide in 2011, followed by the projected balance of wound types in 2025.

Worldwide Share of Wound Prevalence By Type, 2011

Screen Shot 2014-03-25 at 9.13.44 AM

 

Source: MedMarket Diligence, LLC; Report #S190 and Report #S249.

 

Worldwide Share of Wound Prevalence By Type, 2025

Screen Shot 2014-03-25 at 9.14.16 AM

 

Source: MedMarket Diligence, LLC; Report #S190 and Report #S249.

Surgical wounds offer the potential for use of devices which can ensure hemostasis, prevent internal adhesions and anastomoses, secure soft tissue, and close the skin. Traumatic wounds also offer potential for skin closure products and for hemostats, and adhesion prevention during post-trauma surgery. New wound-covering sealant products may also offer potential for treatment of cuts, grazes, and burns.

Chronic wounds are generally not amenable to treatment by adhesives, sealants and hemostats unless the wound has either been debrided to a sterile bleeding surface (in which case it becomes like a surgical wound), or the product offers some stimulant activity. Many hemostats exhibit some inflammatory and cytokinetic activity, which has been associated with accelerated healing. However, this inflammatory activity has also been known to burn the patient’s skin. Chronic wounds are instead dealt with often by a combination of debridement, frequent dressing changes, products to address local vascular circulation and pressure (negative and positive) and others. Progress is being made in reducing the associated healing times, but a large opportunity remains.

Medtech from incremental to quantum leap advances

Advanced medical technologies become advanced by the application of innovation that results in more effective, less costly or otherwise arguably better outcomes (including reduced risk of complications or disease recurrence) for patients, including in some cases enabling treatment when none was previously possible. It is intrinsic to every entrepreneur that the idea he/she is pursuing accomplishes this.

Manufacturers of products on the market have an imperative to either improve upon those products or make them obsolete. This imperative is manifested in a spectrum of planned innovation from simple incremental innovations to the quantum leap of a radically new approach.

There is an enormous amount of technology development, often applicable to multiple different clinical applications, that will be realized in product markets in the future. For the moment, though, I would like to look beyond “incremental improvements” or “product line extensions” or other marginal advances that serve little more than superficially addressing shortcomings of existing products on the market. I would like to look at waves of innovation coming in the short to long term that are expected to impact medtech in ways that are increasingly “radical” or represent varying orders of magnitude of improvement in results.

Three categories spanning short, mid, and long reflect what I see in medtech development. Below, I outline the nature of each and the specific examples that are or will be emerging.

Short term. With change encompassing technologies that are just sufficiently different so that they cannot simply be called incremental innovations, some short term advances often combine two or more complementary and/or synergistic technologies in new ways to advance healthcare. Examples include:

  • Image-guided surgeries to augment the surgeon’s ability to navigate complex anatomy or discern the margins of healthy versus disease tissue.
  • Natural orifice endoscopic surgery (and shift in general from invasive to interventional and intraductal procedures) to either drastically reduce or eliminate the trauma of surgical access
  • Non-invasive therapeutics (like lithotripsy, gamma knife, others) to treat disease without trauma to collateral tissues.
  • Genome-driven treatment profiling (prescreening to determine ideal patients with high probable response).
  • Personalized (custom) implants. These already exist in orthopedics, but the potential for customized implants in gastroenterology, cardiology, and many other clinical areas is wholly untapped.
  • Regenerative technologies (bone, skin, other). These technologies represent introductory markets with lowered challenge compared to more complex functional anatomy (e.g., vital organs).
  • Smart devices (implantable sensors, RFID-tagged implants, etc.) to provide data to clinicians on implant location and status or, in the extreme respond diagnostically or therapeutically to changes in the implant’s immediate environment.

Mid-term. These are new therapeutic options that are fundamentally different than those in current use for a given treatment option. These are technologies that have demonstrated high probability of being feasible in large scale use, but have not yet accumulated enough clinical data to warrant full regulatory approval.

  • Nanotech surface technologies for biocompatibility, localized treatment delivery or other advantages at the interface between patient and product.
  • Materials that adapt to changes in implant environment, to maintain pH, to release drugs, to change shape.
  • Artificial heart. A vital organ replacement that currently has demonstrated the capacity to be a bridge to transplant but has also advanced sufficiently to open the possibility of permanent replacement in the not-too-distant future.
  • Cell/device hybrids. These are organ replacements (e.g., kidney, lung, liver) performing routine function or natural organs, but configured in a device to address unresolved issues of long term function, immune response and others.
  • Artificial organs (other than heart) — closed loop glucometer/insulin pump (artificial pancreas). These are not even partial biological representations of the natural organ, but completely synthetic “organs” that intelligently regulate and maintain a steady state (e.g., blood glucose levels) by combining the necessary functions through combined, closed-loop mechanical means (an insulin pump and glucometer with the necessary algorithms or program to independently respond to changes in order to otherwise maintain a steady state.

Long-term. Orders of magnitude, quantum shift, paradigm shift or otherwise fundamentally different means to serve clinical need.

  • 3D implant printing. In a recent example, in an emergency situation a 3D implant for repair of a infant’s trachea was approved by the FDA. These implants, as in the case of the trachea repair, will most often be customized for specific patients, matching their specific anatomy and may even include their (autologous) cells. They may also be made of other materials including extracellular matrices that will stimulate natural cell migration followed eventually by bioabsorption of the original material. Depending upon type of material and complexity of the anatomy, these technologies may emerge in the near or distant future.
  • Gene therapies. Given the root cause of many diseases has a genetic component or is entirely due to a genetic defect, gene therapies will be “permanent corrections” of those defects. An enormous number of hurdles remain to be crossed before gene therapies are largely realized. These deal with delivery and permanent induction of the corrected genes into patients.
  • Stem cell therapies. The potential applications are many and the impact enormous of stem cell therapies, but while stem cell technology (whether for adult or embryonic) has made enormous strides, many challenges remain in solving the cascade of differentiation while avoiding the potential for aberrant development of these cells, sometimes to proliferative (cancerous) states.
  • “Rational” therapeutics. Whether by stem cell therapies, gene therapies or other biochemical or biological approach, “rational” therapeutics represent the consummate target for medical technology. Such therapeutics are “rational” in the sense that they perfectly address disease states (i.e., effect cures) without complication or need for recurrent intervention.

There are certainly more holes than fabric in this tapestry of short-, mid- and long-term technology innovation, but this should serve to illustrate the correlation between the sophistication of the potential medtech solution and the level of technical challenge in order to achieve each.

 

Reference reports in Ophthalmology, Coronary Stents and Tissue Engineering

MedMarket Diligence has added three previously published, comprehensive analyses of  medtech markets to its Reference Reports listings. The markets covered in the three reports are:

  • Ophthalmology Diagnostics, Devices and Drugs (see link)
  • Coronary Stents: Drug-Eluting, Bare, Bioresorbable and Others (see link)
  • Tissue Engineering, Cell Therapy and Transplantation (see link)

Termed “Reference Reports”, these detailed studies were initially completed typically within the past five years. They now serve as exceptional references to those markets, since fundamental data about each of these markets has remained largely unchanged. Such data includes:

  • Disease prevalence, incidence and trends (including credible forecasts to the present)
  • Clinical practices and trends in the management of the disease(s)
  • Industry structure including competitors (most still active today)
  • Detailed appendices on procedure data, company directories, etc.

Arguably, a least one quarter of every NEW medtech report contains background data encompassing the data listed above.  Therefore, the MedMarket Diligence reports have been priced in the single user editions at $950 each, which is roughly one quarter the price of a full report.

See links above for detailed report descriptions, tables of contents, lists of exhibits and ordering. If you have further questions, feel free to contact Patrick Driscoll at (949) 859-3401 or (toll free US) 1-866-820-1357.

See the comprehensive list of MedMarket Diligence reports at link.

 

Technologies at Recently Identified Medtech Startups

It was a robust month for medtech startups being founded (or at least getting on our radar) with a wide range of technologies under development. Below is a list of technologies under development by these companies:

  • Device to assist in early detection of melanoma.
  • Small molecules for skeletal tissue regeneration.
  • Intubation device.
  • Device for the point-of-care treatment of chronic central pain.
  • Technologies for detection of perforated bowel.
  • Prosthetic heart valve technology.
  • Catheter-based approach to carotid body modulation for treatment of sympathetic nervous system-mediated disease.
  • Sheaths, snares and other devices in interventional cardiology.
  • Device for non-invasive and reversible treatment of presbyopia.
  • Drill device to reduce complications in orthpedic and spine surgery.
  • System for evacuation of surgical smoke.
  • Minimally invasive technologies for the treatment of stroke.
  • Surgical device technology.
  • Robotic system for use in spine surgery.

The companies are included with all available details in our Medtech Startups Database.

Successful wound closure and management depends upon multiple intrinsic and extrinsic factors

The formation of a wound, whether by surgical incision, trauma, or disease, sets up a complex set of conditions that may variously result in rapid healing, a local or systemic infection, a decubitus ulcer or other chronic, non-healing wound. A range of factors can and will dictate which course will ensue, and it is the focus of medical product manufacturers to develop increasingly effective products for debridement, hemostasis, prevention of infection, wound closure, wound sealing, moist (but not too moist) environment, negative (or positive) pressure as necessary, control of temperature and other roles in wound management.

Below are illustrated the fundamental factors affecting wound healing.

Factors Affecting Wound Healing

Factor
Impact
MoistureThe lack of sufficient moisture, or conversely an excess of moisture, can slow down repair. Lack of moisture often occurs with dry wound healing approaches; this stops cellularity, dries out cells and prevents the flow of humoral factors essential for removal of for pathogens and cell communication. It ultimately prevents the movement of keratinocytes for epithelialization. Too much moisture can lead to maceration, which causes osmotic damage to cells and slow healing, as well as breakdown of surrounding tissues.
InfectionInfection by micro-organisms can significantly slow down healing, leading to an extended inflammatory phase and cell necrosis. Some organisms in the wound are not detrimental, and evidence suggests that some microbes accelerate healing. However, organisms like Staphylococcus aureus and many anaerobic microbes are pathogenic and will live off the tissues.
DebrisThe presence of debris within the wound will delay healing. It is essential to remove any contaminating material that may be a source of infection, or which may delay healing through chemical or physical obstruction.
TemperatureTissue healing tends to be optimal at higher than normal physiological temperature. The exact reasons are not clear, but at higher temperatures enzymes and cell metabolism tend to achieve faster removal of pathogens and greater catabolic activity.
PressurePressure is a major extrinsic factor that can be detrimental to healing. This is why significant effort has gone into development of pressure relief products for use in situations involving mechanical stress. In addition, a number of devices have been evolved which are designed to modify the pressure around a wound to facilitate healing.

Source: MedMarket Diligence, LLC; Report #S190.

It is important to close a wound rapidly and to create a moist wound healing environment that is not disturbed by adverse temperature and other effects. The successful application of surgical closure and securement products can serve to accomplish this goal, maintaining the natural tissue continuity and integrity, and helping to control bodily temperatures within optimal healing conditions.

There are several new technologies, delivery systems and products in development, some of which may come onto the market during the forecast period or shortly thereafter. In parallel with the invention of new products, in several instances new delivery systems have had to be developed. For example, new delivery systems have evolved to spray liquid hemostat solutions such as thrombin onto surgical sites to improve speed of hemostasis. Fibrin sealant is supplied as two powders that need to be solubilized and then mixed immediately prior to application to the surgical site. This has led to the development of a number of sophisticated medical delivery devices, while some companies are developing single component systems that are already solubilized for immediate use in the surgical theater.

Underestimating obesity

Obesity Co-Morbidities

  • Cardiometabolic syndrome
  • Type 2 diabetes
  • Hypertension
  • Dyslipidemia
  • Coronary heart disease
  • Osteoarthritis
  • Stroke
  • Gall bladder disease
  • Obstructive sleep apnea
  • Gastroesophageal reflux disease (GERD)
  • Some cancers (endometrial, breast, and colon)

Current estimates of obesity prevalence in the U.S. are based on body mass index (BMI) and account for  20% obesity rate in the 50 states, with 12 states having rates of over 30%, according to the CDC.  However, recent research carried out by researchers at New York University School of Medicine and other institutions have indicated the imprecision of BMI is resulting in a high number of false negatives for obesity.  In the research studying a sampling of men and women and comparing BMI to an alternative method for determining obesity by employing specific biomarkers and duel-energy x-ray absorptiometry (DXA), the BMI measurement concluded that 26% of the subjects were obese, while DXA concluded that 64% of the patients were obese.

Body mass index has previously been challenged as a measure of obesity due to its inability to effectively differentiate between body types regarding obesity. Whether the DXA ultimately becomes a more reliable standard measure for obesity remains to be seen, but what is clear is that any measure that results in higher counts of the obese will be met by healthcare (and the medical product industry) as justification for increased spending in the treatment of obesity. Further research, of course, will be necessary to evaluate the relationship between the increased sensitivity to detection of obesity and the identification of associated morbidity or, as is often the case with obesity, the co-morbidities of diabetes, heart disease and other expensive healthcare challenges.


For further information on obesity drugs and devices, see the 2011 MedMarket Diligence report #S835, "Products, Technologies and Markets Worldwide for the Clinical Management of Obesity, 2011-2019".