Category Archives: ophthalmology

products, technologies and practices in the management of vision disorders and eye-related diseases

Where will medicine be 20 years from now?

My answer from this question on Quora.

I can answer this question, at least speculatively, from the perspective of clinical practice and medical technology. The other side of “where medicine will be” is the question of healthcare delivery systems, reimbursement, etc. To get that part of it out of the way, it is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries and the demands they put on healthcare delivery work directly against quality of care. So, whether it is Obamacare, a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective.

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions.
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.
  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.
  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice translumenal endoscopic surgery will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.
  • Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.


There will be many more unforeseen medical advances achieved within 20 years, many arising from research that may not even be imagined yet. However, the above advances are based on actual research and/or the advances that have already arisen from that research.

Applications, global markets in tissue engineering and cell therapy

Screen Shot 2014-04-17 at 7.37.44 AMThe market for tissue engineering and cell therapy products is set to grow from a respectable $8.3 billion in 2010 to nearly $32 billion by 2018. This figure includes bioengineered products that are themselves cells or are actively stimulating cell growth or regeneration, products that often represent a combination of biotechnology, medical device and pharmaceutical technologies. The largest segment in the overall market for regenerative medicine technologies and products comprises orthopedic applications. Other key sectors are cardiac and vascular disease, neurological diseases, diabetes, inflammatory diseases and dental decay and injury.

Cell-tissue-applications

Factors that are expected to influence this market and its explosive growth include political forces, government funding, clinical trial results, industry investments (or lack thereof), and an increasing awareness among both physicians and the general public of the accessibility of cell therapies for medical applications. Changes in the U.S. government’s federal funding of embryonic stem cell research has given a potentially critical mass of researchers increased access to additional lines of embryonic stem cells. This is expected to result in an increase in the number of research projects being conducted and thus possibly hasten the commercialization of certain products.

regional-forecast

Source: Report #S520, “Tissue Engineering, Cell Therapy and Transplantation: Products, Technologies & Market Opportunities, Worldwide, 2009-2018.”

Another factor that has influenced the advancement of regenerative technologies is found in China, where the Chinese government has encouraged and sponsored cutting-edge (and some have complained ethically questionable) research. While China’s Ministry of Health has since (in May 2009) established a policy requiring proof of safety and efficacy studies for all gene and stem cell therapies, the fact remains that this research in China has spurred the advancement of (or at least awareness of) newer applications and capabilities of gene and stem cell therapy in medicine.

Meanwhile, stricter regulations in other areas of Asia (particularly Japan) will serve to temper the overall growth of commercialized tissue and cell therapy–based products in that region. Nonetheless, the growth rate in the Asia/Pacific region is expected to be a very robust 20% annually.


MedMarket Diligence’s Report #S520 remains the most comprehensive and credible study of the current and project market for products and technologies in cell therapy and tissue engineering.

Growth in Sales of Products in Cell Therapy and Tissue Engineering

Tissue engineering and cell therapy comprise a market for regenerative products that has been growing and will continue to grow at over 20% annually through 2018. This market spans many specialties, the biggest of which is therapies for degenerative and traumatic orthopedic and spine applications. Other disorders that will benefit from cell therapies include cardiac and vascular disease, a wide range of neurological disorders, diabetes, inflammatory diseases, and dental decay and/or injury. Key factors expected to influence the market for regenerative medicine are continued political actions, government funding, clinical trials results, industry investments, and an increasing awareness among both physicians and the general public of the accessibility of cell therapies for medical applications.

The current high rate of growth in cell therapy and tissue engineering product sales is due to the confluence of multiple market drivers:

  • Advances in basic science revealing the nature of cell growth, differentiation and proliferation
  • Advances by industry to manipulate and determine cell growth toward specific therapeutic solutions
  • Low barrier to entry for competitors in the market
  • Broad range of applications of cell/tissue advances to many different specialties with modest adaptation needed
  • Strong venture funding

The dominant clinical area driving cell therapy and tissue engineering product sales is orthopedics and musculoskeletal, wherein bone grafts and bone graft substitutes are well-established. Below is the projected balance of cell therapy and tissue engineering product revenues by clinical area through 2018.

Screen Shot 2014-04-08 at 9.26.25 AM

Source: MedMarket Diligence, LLC; Report #S520.

While orthopedics, musculoskeletal and spine applications will remain a huge share of this market, more growth is coming from cell/tissue products in most other areas, which have only recently (within the last five years) begun to establish themselves.

Screen Shot 2014-04-08 at 9.34.50 AM

Source: MedMarket Diligence, LLC; Report #S520.

Reference reports in Ophthalmology, Coronary Stents and Tissue Engineering

MedMarket Diligence has added three previously published, comprehensive analyses of  medtech markets to its Reference Reports listings. The markets covered in the three reports are:

  • Ophthalmology Diagnostics, Devices and Drugs (see link)
  • Coronary Stents: Drug-Eluting, Bare, Bioresorbable and Others (see link)
  • Tissue Engineering, Cell Therapy and Transplantation (see link)

Termed “Reference Reports”, these detailed studies were initially completed typically within the past five years. They now serve as exceptional references to those markets, since fundamental data about each of these markets has remained largely unchanged. Such data includes:

  • Disease prevalence, incidence and trends (including credible forecasts to the present)
  • Clinical practices and trends in the management of the disease(s)
  • Industry structure including competitors (most still active today)
  • Detailed appendices on procedure data, company directories, etc.

Arguably, a least one quarter of every NEW medtech report contains background data encompassing the data listed above.  Therefore, the MedMarket Diligence reports have been priced in the single user editions at $950 each, which is roughly one quarter the price of a full report.

See links above for detailed report descriptions, tables of contents, lists of exhibits and ordering. If you have further questions, feel free to contact Patrick Driscoll at (949) 859-3401 or (toll free US) 1-866-820-1357.

See the comprehensive list of MedMarket Diligence reports at link.

 

Technologies at recently identified medtech startups

Below is a list of the technologies under development at startups that MedMarket Diligence recently identified and added to the Medtech Startups Database.

  • Tissue regeneration technologies for non-invasive skin care.
  • Biomaterials supplied to medical device and pharma manufacturers
  • Trans-reflective fetal EKG.
  • Surgical instrumentation.
  • Undisclosed medical technology.
  • Technologies for autologous tissue collection.
  • Stem cell therapy.
  • Novel, implantable ring to prevent parastomal hernia in abdominal surgery.
  • Transcatheter repair of mitral valve regurgitation.
  • Synthetic cartilage implant for treatment of osteoarthritis or cartilage damage.
  • Device-based treatment of congestive heart failure.
  • Clamping device to control bleeding in trauma.
  • Tissue matrix composition for tissue regeneration and wound care.
  • Spinal pain relief devices.
  • Wireless remote arrhythmia monitoring and diagnosis.
  • Undisclosed medical technology.
  • Surgical tools for arthroscopic procedures.
  • Fractional flow reserve guidewire method to obtain FFR measurements during coronary catheterization procedures.
  • Technology to ensure accurate intraoperative placement of hip and knee implants.
  • Neurological diagnostics to measure biomarkers, regulate drug dosage, others.
  • Respiratory monitoring devices, such as a “sleep sensors” shirt to enable less invasive monitoring for apnea or other respiratory conditions.
  • Endoscopic, minimally-invasive harvesting of veins used for coronary artery bypass grafting.
  • Ophthalmology diagnostics; binocular device for eye exams.
  • Device-based treatment for respiratory disease.

Medtech fundings for January 2013

Jan-2013-fundingsFundings for medical technology companies for the month of January closed at $376 million.  Top fundings for the month included:

  • $85 million for Insulet Corp. (insulin pump)
  • $45 million for LipoScience, Inc. (NMR diagnostics)
  • $27 million for Ivantis (microstent for glaucoma)*
  • $23.8 million for Ocular Therapeutix (ophthalmic drug delivery)
  • $22.3 million for Tryton Medical (stent for bifurcated coronary lesions)

*Not shown in graph at right.

The complete list of medtech fundings for January is available at link.

Please see our prior post on medtech financing trends 2009-2012. Fundings for medtech in 2012 came in at $5,014 million, just 2% off from the $5,121 million raised in 2011.

Current and potential patient caseload for sealants, glues, wound closure and anti-adhesion

The current and potential uses for surgical sealant products (glues, sealants, hemostats, anti-adhesion) varies by the clinical area and the type of benefit these products offer patients. These benefits range from the “important and enabling” in which their use provides potentially life-saving benefits compared to traditional wound sealing/closure products to those “aesthetic and perceived” benefits (e.g., reduced scarring) that are more cosmetic in nature.

We have assessed the potential global patient caseload that would benefit from these wound closure and sealant products along a spectrum from clinically necessary to aesthetically beneficial, in the following four categories:

Category I: Important and Enabling
Important to prevent excessive bleeding and transfusion, to ensure safe procedure, and to avoid mortality and to avoid complications associated with excessive bleeding and loss of blood.

Category II: Improved Clinical Outcome
Reduces morbidity due to improved procedure, reduced surgery time, and prevention of complications such as fibrosis, post-surgical adhesion formation, and infection (includes adjunct to minimally invasive surgery).

Category III: Cost-Effective and Time-Saving
Immediate reduction in surgical treatment time and need for follow-up treatments.

Category IV: Aesthetic and Perceived Benefits
Selection is driven by aesthetic and perceived benefits, resulting in one product being favored over a number of medically equivalent treatments.

Most importantly, we have assessed the sizes of the patient populations that are the targets of these different classes of clinical benefits by major clinical area.  Below are illustrated, by both Clinical Area/Benefit and Benefit/Clinical Area, to illustrate the current and future volume of patient caseload for these novel wound closure and sealant products:

Surgical Procedures with Potential for the Use of Hemostats, Sealants, Glues and Adhesion Prevention Products, Worldwide (Millions), 2011

sealant-categories-A

Source: Report #S190

Sealant-categories-B

Source: Report #S190