The best medtech investment opportunities

In reviewing patents, fundings, technology development trends, market development, and other hard data sources, we feel these are some of the strongest areas for investment in not only the medical device side of medtech, but also the broader biomedical technology arena:

  • Materials technologies
    • graphene
    • bioresorbables
    • biosensors
    • polymers
    • bioadhesives
  • Cell therapy and tissue engineering
    • cell-based treatments (diabetes, spinal cord injury, traumatic brain injury)
    • extracellular matrices in soft tissue repair and regeneration
  • Nanotechnology (subject of forthcoming report)
    • nano coatings
    • nano- and micromedical technologies for localized drug delivery
    • nanoparticles
  • 3D printing
    • prototype development
    • patient-specific implants
  • Minimally- and non-invasive technologies
    • transcatheter alternatives to surgery
    • NOTES (natural orifice transluminal endoscopic surgery)
  • Diabetes non-invasive glucose testing
  • Intraoperative surgical guidance
    • Cancer probes (e.g., fluorescent or optical coherence tomography, frozen section, cytologic imprint analysis, ultrasound, micro-computed tomography, near-infrared imaging, and spectroscopy)
  • neurostimulation and neuromodulation
  • point-of-care diagnostics
  • point-of-care imaging
  • AI-enhanced devices

In addition, there are many areas in healthcare in which there is much untapped demand with problems that, so far, seem to have eluded medtech solutions. These include infection control (Zika, MRSA, TB, nosocomial infections, etc.), chronic wound treatment (including decubitus/stasis/diabetic ulcers), type 2 diabetes and obesity.

 

Medtech Fundings for September 2016

Fundings in medical technology stand at $900 million for the month, led by the $345 million private placement by Insulet Corp., followed by the $168 million funding of Intarcia Therapeutics, the $86 million IPO of iRhythm Technologies, and the $75 million IPO of Obalon Therapeutics.

Below are the top fundings for the month thus far. Revisit this post (and refresh your browser) through September to see updates.

For the complete list of September 2016 fundings, see link.

screen-shot-2016-09-26-at-10-54-28-am

Source: Compiled by MedMarket Diligence, LLC.

For a historical list of medtech fundings by month since 2009, see link.

List of high growth medtech products

Below is a table with a list of the market segments demonstrating greater than 10% compound annual growth rate for the associated region through 2022, drawn from our reports on tissue engineering & cell therapy, wound management, ablation technologies, stroke, peripheral stents, and sealants/glues/hemostats. Products with over 10% CAGR in sales are shown in descending order of CAGR.

RankProductTopicRegion
1General, gastrointestinal, ob/gyn, othertissue/cellWW
2Ophthalmologytissue/cellWW
3Organ Replacement/ Repairtissue/cellWW
4Urologicaltissue/cellWW
5Neurologicaltissue/cellWW
6Autoimmune Diseasestissue/cellWW
7CV/ Vasculartissue/cellWW
8Bioengineered skin and skin substituteswoundRest of A/P
9Peripheral drug-eluting stents (A/P)peripheral interventionalA/P
10Peripheral drug eluting stentsperipheral interventionalRoW
11Peripheral drug-eluting stents (US)peripheral interventionalUS
12Negative pressure wound therapywoundGermany
13Hydrocolloid dressingswoundRest of A/P
14Cancertissue/cellWW
15Foam dressingswoundRest of A/P
16Growth factorswoundRest of A/P
17Alginate dressingswoundRest of A/P
18Dentaltissue/cellWW
19Bioengineered skin and skin substituteswoundJapan
20Hemostatssealants, glues, hemostatsA/P
21Skin/ Integumentarytissue/cellWW
22Bioengineered skin and skin substitutessealants, glues, hemostatsUS
23Bioengineered skin and skin substitutessealants, glues, hemostatsWW
24Film dressingswoundRest of A/P
25Surgical sealantssealants, glues, hemostatsA/P
26Hydrogel dressingswoundRest of A/P
27TAA Stent graftsperipheral interventionalA/P
28Negative pressure wound therapywoundRoW
29Biological gluessealants, glues, hemostatsA/P
30FoamwoundRoW
31HydrocolloidwoundGermany
32AAA Stent graftsperipheral interventionalA/P
33Cerebral thrombectomy systemsstrokeA/P
34High-strength medical gluessealants, glues, hemostatsA/P
35Carotid artery stenting systemsstrokeA/P
36Cardiac RF ablation productsablationA/P
37Alginate dressingswoundGermany
38Peripheral venous stentsperipheral interventionalA/P
39Cerebral thrombectomy systemsstrokeUS
40Left atrial appendage closure systemsstrokeA/P
41Cyanoacrylate gluessealants, glues, hemostatsA/P
42Foam dressingswoundRest of EU
43Foam dressingswoundKorea
44Cryoablation cardiac & vascular productsablationA/P
45Bioengineered skin and skin substituteswoundGermany
46Thrombin, collagen & gelatin-based sealantssealants, glues, hemostatsA/P
47Cardiac RF ablation productsablationRoW
48Bioengineered skin and skin substituteswoundRoW
49Microwave oncologic ablation productsablationA/P

Note source links: Tissue/Cell, Wound, Sealants/Glues/Hemostats, Peripheral Stents, Stroke, Ablation.

Source: MedMarket Diligence Reports

Where will medicine be in 2035?

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, in the U.S., whether Obamacare persists (most likely) or is replaced with a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective. 

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions. Cancer and genomics, in particular, has been a lucrative study (see The Cancer Genome Atlas). Immunotherapy developments are also expected to be part of many oncology solutions. Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it. 
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.

Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics.

  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.

Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines.

  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, long-term and/or less costly solutions.
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.

    As the human genome is the engineering plans for the human body, it is a potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions –> Case in point, the recent emergence of the gene-editing technology, CRISPR, has set the stage for practical applications to correct genetically-based conditions.
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma, including pharmacogenomics to predict drug response. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.

    By 2035, technologies such as these will measurably reduce inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of minimally invasive technologies (e.g., especially the NOTES technology platform). A wide range of other technologies (e.g., gamma knife, minimally invasive surgery/intervention, etc.) across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit while minimizing or eliminating collateral damage.

Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits.

  • Personalized medicine. Perfect matches between a condition and its treatment are the goal of personalized medicine, since patient-to-patient variation can reduce the efficacy of off-the-shelf treatment. The thinking behind gender-specific joint replacement has led to custom-printed 3D implants. The use of personalized medicine will also be manifested by testing to reveal potential emerging diseases or conditions, whose symptoms may be ameliorated or prevented by intervention before onset.
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.Other technologies being developed aggressively now will have an impact over the next twenty years, including medical/surgical robots (or even biobots), neurotechnologies to diagnose, monitor, and treat a wide range of conditions (e.g., spinal cord injury, Alzheimer’s, Parkinson’s etc.).

The breadth and depth of advances in medicine over the next 20 years will be extraordinary, since many doors have been recently opened as a result of advances in genetics, cell biology, materials science, systems biology and others — with the collective advances further stimulating both learning and new product development. 


See the 2016 report #290, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.”

Growth in wound management from trends in prevalence, technology

Worldwide, an enormous number of wounds are driving a $15 billion market that will soon pass $20 billion. What is driving wound sales is the continued growth and prevalence of different wound types targeted by medical technologies ranging from bandages to bioengineered skin, physical systems like negative pressure wound therapy, biological growth factors, and others.

Most attention in wound management is focused on improving conventional wound healing in difficult clinical situations, especially for chronic wounds, in the expansion of wound management technologies to global markets, and in the application of advanced technologies to improve healing of acute wounds, especially surgical wounds.

Global Prevalence of Wound Types, 2015

Screen Shot 2016-03-02 at 12.18.44 PM

Source: MedMarket Diligence LLC; Report #S251. Request excerpts from this report.

Total Wound Care Market as Percent of Entire Market, 2024

Screen Shot 2016-03-02 at 12.44.46 PM

Source: MedMarket Diligence LLC; Report #S251. Request excerpts from this report.


 

Global wound market highlights

Highlights from the 2015 MedMarket Diligence report #S251, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World” —

Wound management is a large global market (almost $15 billion currently) driven by high and sustained volume of traumatic, surgical, and other chronic and acute wound types. Simple wound dressings with little technology development continue to more than adequately serve a large swath of wound caseload and will continue to generate 1-2% in annual growth through 2024.

However, while a great deal of wound management products provide unsophisticated but effective wound care — and this is particularly why these products sell much better outside well developed western markets — the growing cost of wounds that do not heal fast enough, or at all, has been compounded by changes in wound incidence arising from increased obesity, the aging population, and other forces, creating demand for more sophisticated wound solutions. Enter the array of advanced wound care products like innovative wound dressing materials and components, bioengineered skin and other skin substitutes, biological wound growth factors, and others. These products have been projected to grow at an annual rate of up to 16% annually. The result is a steady erosion of the share of the global market represented by simple dressings and bandages.

 

Source: MedMarket Diligence, LLC; Report #S251

Technologies in Development at Medtech Startups, October 2015

In our flurry of activity in October, we overlooked summarizing the new medical technologies identified at startups and added to the Medtech Startups Database:

  • Neodymium vaginal dilator for treatment of pelvic pain.
  • Large bore, power injection vascular access
  • Surgical instruments for use in bariatrics.
  • Surgical oncology.
  • Spine surgical technology including expandable intervertebral cage.
  • Technologies to treat hearing loss.
  • Device to determine blood vessel size.
  • Cerebrospinal fluid shunt.
  • Focused ultrasonic surgical devices for hemostasis, cauterization, and ablation.
  • Collagen polymers to create 3D tissue systems for drug discovery, engineered tissue/organ, wound management, and 3D bioprinting.
  • Regenerative medicine to treat brain injury or damage.
  • Neuro-monitoring and neuro-critical care.
  • Orthomusculoskeletal implants.
  • Devices and methods for hip replacement
  • Intraoperative image system.
  • Exocentric medical device
  • Electro-hydraulic generated shockwave for cosmetic, medical applications.

For a historical listing of technologies at medtech startups, see link.

Medtech Startups, 2010-2015

From 2010 to present (Oct 2015), as included in the Medtech Startups Database, MedMarket Diligence identified 442 new (under one year old) medical technology startups whose businesses encompass, alone or in combination, medical devices, diagnostics, biomaterials, and the subset of both biotech and pharma that is in direct competition with medical devices, including tissue engineering and cell therapy. Of these, 74% were founded in the U.S., 5% were founded in Israel, and the rest were founded in 18 other countries.

Companies in the database have been categorized by clinical and/or technology area of focus, with multiple categories possible (e.g., minimally invasive and orthomusculoskeletal and surgery). Below is the composition of the companies identified from Jan. 2010 to Oct. 2015.

Screen Shot 2015-10-06 at 4.50.10 PM

Source: Medtech Startups Database

Below is a graphic on the companies by country. The U.S. (not shown) led with 327 companies.

Screen Shot 2015-10-06 at 4.17.30 PM

Source: Medtech Startups Database

In the U.S., the breakdown by state, other than California and its 466 companies (excluded only to show states with significantly lower numbers), is as follows:

Screen Shot 2015-10-06 at 5.13.08 PM

Source: Medtech Startups Database

 

Wound Sealant and Securement Procedure Volumes by Clinical Area and End-Point

(See the 2016 published report #S290, “Sealants, Glues, Hemostats, 2016-2022”.)

Sealants, glues, hemostats, and other products in wound closure and securement offer benefits that vary by clinical area, but the nature of that benefit also varies by the type of end-point (benefit) the product achieves — does it provide a life-saving benefit? A time-saving? Cost-savings? A cosmetic or aesthetic benefit?

Accordingly, by examining the volume of procedures for which closure and securement products provide which kind of benefit is crucial to understanding demand, especially between competitive products.

Below is a categorization of benefits ranging from the critical (I) to the aesthetic (IV).

Criteria for Adjunctive Use of Hemostats, Sealants, Glues and Adhesion Prevention Products in Surgery

Screen Shot 2015-06-23 at 7.24.29 AM

Source: MedMarket Diligence, LLC (Report #S192)

Considering these different categories, below are the volumes of procedures distributed by category across each of the major clinical disciplines.

Surgical Procedures with Potential for the Use of Hemostats, Sealants, Glues and Wound Closure Products, Worldwide (Millions), 2014

 

 

 

 

Screen Shot 2015-06-23 at 7.28.36 AM

Source: MedMarket Diligence, LLC (Report #S192)

(See the 2016 published report #S290, “Sealants, Glues, Hemostats, 2016-2022”.)

Funding in medical technology, October 2014

Funding for medical technologies in October 2014 totaled $332 million, led by the $59 million funding of Ivantis, Inc., and the $55 million funding of PureTech.

Below are the top fundings for the month:

Company, fundingProduct/technology
Ivantis, Inc., has raised $58.87 million of a $71.37 million round of fundng according to a regulatory filingStent-based treatment to lower intraocular pressure in glaucoma
PureTech has raised $55 million in a round of funding according to the companyMedical device and other technologies spanning treatments in immunology, metabolism, neuroscience, drug delivery and consumer digital health
VytronUS, Inc., has raised $31.6 million in a Series B round of funding according to the companyIntegrated imaging and ultrasound ablation for treatment of cardiac arrhythmias
Respicardia, Inc., has raised $25.09 million in a round of funding according to a regulatory filingElectrical pulse-based implant treatment for sleep apnea
Magnus Life Science (Magnus Life Ltd) has raised £15.5 million ($24.96 million) in a round of funding according to regulatory filingDevice and non-device technologies based on dynamics of bloodflow
Medrobotics Corp. has raised $20 million in a preferred stock offering according to the companyComputer-assisted access and visualization system for minimally invasive robotic surgery

For the complete list of medtech fundings in October 2014, see link. For a historical list of the fundings in medtech, by month, since 2009, see link.