Cardiovascular Surgical and Interventional Procedures Worldwide, 2015-2022

In 2016, the cumulative worldwide volume of the the following CVD procedures is projected to approach 15.05 million surgical and transcatheter interventions:

  • roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

screen-shot-2016-11-07-at-7-26-38-am

CABG: Coronary artery bypass graft; PCI: Percutaneous coronary intervention; AAA: Abdominal aortic aneurysm; TAA: Thoracic abdominal aneurysm; CVI: Chronic venous insufficiency; DVT: Deep vein thrombosis; PE: Pulmonary embolectomy.

Source: MedMarket Diligence, LLC; Report #C500, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.”

Technologies at Recent Medtech Startups

Below is a list of the technologies under development at medical technology startups identified in October 2016 and included in the Medtech Startups Database:

  • Neuro-stimulation via patch.
  • Epinephrine auto-injector
  • Portable ultrasound device to detect the occurrence of strokes.
  • Medication adherence device to facilitate self-injection.
  • Diagnosis of malaria and sickle cell.
  • Implant devices to fight biofilms and infection.
  • Technologies to address infection and other risk in nursing protocols.
  • Electronic bone depth gauge for use in orthopedics.
  • Peripheral chronic total occlusion device.
  • Deep learning and artificial intelligence in point of care ultrasound.
  • Quantitative transmission ultrasound.

A historical listing of technologies at medtech startups (through January 2016).

Requirements for acceptance of new peripheral stents in clinical practice

Stents are implantable devices designed as endoluminal scaffolds to maintain patency following recanalization of occluded or structurally compromised vascular (and non-vascular) circulatory conduits that enable energy supply and metabolic exchange in various organs and tissues of the human body. Palliative stenting has been routinely used for decades in the management of acute and chronic obstructions of gastro-intestinal, pulmonary and urinary tracts secondary to benign or malignant neoplasms or other cite-specific or systemic pathologies. However, a real explosion in utilization of stents was triggered in the early 1990s by the advent of vascular stenting devices, which allowed radically improved clinical outcomes of balloon angioplasty and supported its emergence as the first choice treatment modality for occlusive peripheral and coronary artery disease (PAD and CAD). By the end of 2014, more than three quarters of patients with acute and chronic arterial occlusions warranting intervention were referred for angioplasty-based therapy, which entailed placement of stenting devices in over 80% of commonly performed peripheral revascularization procedures.

To be accepted in clinical practices, stenting implants should satisfy a number of general and application-specific requirements relating to device biocompatibility, functional performance, and end-user and patient friendliness which are summarized in the exhibit below. In very general terms, stenting device biocompatibility refers to minimization of hostile immune responses (and other local and systemic adverse reactions) that are inevitably triggered by a direct contact of any implantable medical device with living tissues and bodily fluids in situ. For understandable reasons, biocompatibility depends primarily on the implant surface material, including such characteristics as chemical inertness and stability, corrosion resistance, etc. The stenting device biocompatibility can also be effected somewhat by the duration of its presence in situ and specifics of the deployment site and occlusion causing pathology.

The stent’s functional performance (or ability to maintain adequate scaffolding support and lumen patency for a desired period of time) represents a complex function of the device design/architecture and the relative static and dynamic strength of its base material. The chosen stenting device’s architecture and structural material predetermine it radial strength, longitudinal flexibility, conformability and foreshortening, as well as relative lesion coverage, fatigue and kinking resistance, circulatory flow obstruction, etc.

Finally, the stent’s end-user and patient friendliness are predicated both by the design concept of the delivery system and stenting device and refers to procedural convenience, predictability, safety, morbidity, availability of bail-out options, etc. The commonly acknowledged stenting system characteristics relating to the end-user/patient friendliness include low profile, flexibility, traceability, high radiopacity, compatibility with established transcatheter tools and techniques, ease of use and short learning curve, simplicity of retrieval in case of procedural failure, possibility of emergent /elective conversion to surgery, etc.

Selected Biomedical, Clinical and Technical Requirements
for Stenting Implants

screen-shot-2016-10-04-at-2-36-22-pm

Source: MedMarket Diligence, LLC; Report #V201.

Coronary and venous interventions show inevitable Asia/Pacific dominance

Coronary revascularization, whether by bypass graft or percutaneous coronary intervention, drives an enormous amount of medtech business. Angioplasty catheters, guidewires, and the plethora of devices in cardiothoracic surgery represent many millions in sales annually. Manufacturers pursuing growth in these areas will see big, but slowing growth rates in the U.S., while markets in Asia/Pacific reflect the growing demand for cardio technologies. Already, these markets are surpassing western markets:

screen-shot-2016-10-03-at-2-20-47-pm

Source: Report #C500.

While coronary applications have a long history, venous interventions have less, and procedure data shows that patient populations have not been fully tapped in any geographic region. Already, Asia/Pacific markets would appear to be on course to eclipse western markets, but not until after 2022, and will eclipse Western Europe markets before challenging the U.S.

screen-shot-2016-10-03-at-2-20-38-pm

Source: Report #C500.

Coronary and Peripheral Vascular Dominate Global Cardiovascular Procedure Volumes

In 2016, the cumulative worldwide volume of the cardiovascular device procedures is projected to approach 15.05 million surgical and transcatheter interventions. This will include:

  • roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

screen-shot-2016-09-28-at-11-05-28-am

Source: Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.

Eight Sectors of Cardiovascular Surgery Reveal Growth, Volume to 2022

The global market for cardiovascular devices is in the billions. Its size and association with life-saving clinical utility ensures that investors will support a surprisingly strong range of innovations in an otherwise very well-established medtech market. There is stable growth in many cardio technologies that have attained “gold standard”; aggressive growth in China, India, and Japan; and select new cardio technologies expected to rapidly seize caseload. 

Report #C500, excerpted below, provides forecasts and analysis of cardiovascular surgical and interventional procedures to illustrate the volume and growth by clinical area, caseload trend, practice trend, technology introduction or regional dynamic impact.


During the forecast period 2016 to 2022, the total worldwide volume of cardiovascular surgical and interventional procedures, tracked by MedMarket Diligence, is forecast to expand on average by 3.7% per annum to over 18.73 million corresponding surgeries and transcatheter interventions in the year 2022. The largest absolute gains can be expected in peripheral arterial interventions (thanks to explosive expansion in utilization of drug-coated balloons in all market geographies), followed by coronary revascularization (supported by continued strong growth in Chinese and Indian PCI utilization) and endovascular venous interventions (driven by grossly underserved patient caseloads within the same Chinese and Indian market geography).

The latter (venous) indications are also expected to register the fastest (5.1%) relative procedural growth, followed by peripheral revascularization (with 4.0% average annual advances) and aortic aneurysm repair (projected to show a 3.6% average annual expansion).

Geographically, Asian-Pacific (APAC) market geography accounts for slightly larger share of the global CVD procedure volume than the U.S. (29.5% vs 29,3% of the total), followed by the largest Western European states (with 23.9%) and ROW geographies (with 17.3%). Because of the faster growth in all covered categories of CVD procedures, the share of APAC can be expected to increase to 33.5% of the total by the year 2022, mostly at the expense of the U.S. and Western Europe.

However, in relative per capita terms, covered APAC territories (e.g., China and India) are continuing to lag far behind developed Western states in utilization rates of therapeutic CVD interventions with roughly 1.57 procedures per million of population performed in 2015 for APAC region versus about 13.4 and 12.3 CVD interventions done per million of population in the U.S. and largest Western European countries.

screen-shot-2016-09-09-at-1-11-05-pm

Source: MedMarket Diligence, LLC; Report #C500.

Report #C500 is a worldwide and regional cardiovascular surgical and interventional procedure forecast and analysis of device market impacts.

The Five Highest Growth Cardiovascular Procedures

#5. Cerebral thrombectomy.

The initial use of cerebral thrombectomy systems has been a disappointment. It is generally assumed that the situation with end-user adoption is likely to improve dramatically in two-three years from now, when results of the ongoing major U.S. and international trials with novel cerebral thrombectomy devices become available. Growth will exceed 11% annually through 2022.

#4 Below-the-knee drug-coated balloon angioplasty for superficial femoral artery. 

There is now a broad-based consensus among leading interventional radiologists that peripheral angioplasty using DCBs should be seen as a first-line revascularization option for both primary treatment and revision of advanced arterial occlusions in the SFA vascular territory. This will lead to better than 14% annual growth in these procedures through 2022.

#3 Transcatheter heart valve replacement. 

The use of transcatheter techniques in heart valve replacement and repair is projected to grow at over 14%, to be supported by the anticipated regulatory approval of TAVR procedures for intermediate risk patients in late 2016, and, plausibly, for standard surgical risk caseloads by 2019.

#2 Left atrial appendage endovascular closure in AFib.

The global volume of endovascular LAA closure procedures is projected to experience a robust double-digit growth expanding an average of over 14% annually, nearly doubling to an estimated 52 thousand corresponding interventions in the year 2022. Anticipated strong growth in the endovascular LAA closure utilization will be driven by increasing penetration of the Asian-Pacific (primarily Chinese and Indian) market geography with an extra boost from the recent U.S. launch of transcatheter LAA closure systems. Advances in the mature European market and emerging ROW marketplace are likely to stay below projected average growth rates.

#1 Lower extremity angioplasty and DES procedures.

Lower extremity angioplasty and drug-eluting stenting is forecast to increase almost three-fold from 2016 to 2022.

From 2015 to 2022, the cumulative global volume of PTA procedures is projected to expand an average of 4.2% per annum to year 2022. The cited expansion will be driven largely by a strong annual procedural growth in the APAC region (primarily in China and India undergoing aggressive transition to modern interventional radiology practices), which is forecast to account for about over a third of PTAs performed worldwide in 2022. The U.S. and Western European geographies can be expected to register only a moderate PTA procedural growth to be supported mostly by increasing penetration of the SFA patient caseloads with DES-based interventions, but the worldwide utilization of stented PTAs (especially these employing DES devices) is forecast to grow at significantly faster (4.2% and 19.1%) average annual rates to over 986,000 and 203,000 corresponding procedures in the year 2022.

Screen Shot 2016-08-22 at 8.44.25 AM

Source: MedMarket Diligence, Report #C500.


From “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.” Report #C500.

 

 

The future of cardiovascular medicine

The MedMarket Diligence has published a global analysis and forecast of cardiovascular procedures, designed to be a resource for active participants or others with interest in the future of cardiovascular medicine and cardiovascular technologies.

See the press release on Medgadget.

Surgical and interventional cardiovascular procedures, worldwide

In August 2016, MedMarket Diligence will be releasing Report #C500, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”. The report details prevalence, incidence, and caseload for the following procedures, forecast to 2022, and examines the clinical practice trends, technologies emerging on the market, and the dynamics leading to trends in procedures utilization and technology adoption.

Surgical and interventional procedures included:

  • Coronary artery bypass graft (CABG) surgery
  • Coronary angioplasty and stenting
  • Lower extremity arterial bypass surgery
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting
  • Peripheral drug-coated balloon angioplasty
  • Peripheral atherectomy
  • Surgical and endovascular aortic aneurysm repair
  • Vena cava filter placement
  • Endovenous ablation
  • Mechanical venous thrombectomy
  • Venous angioplasty and stenting
  • Carotid endarterectomy
  • Carotid artery stenting
  • Cerebral thrombectomy
  • Cerebral aneurysm and AVM surgical clipping
  • Cerebral aneurysm and AVM coiling & flow diversion
  • Left Atrial Appendage closure
  • Heart valve repair and replacement surgery
  • Transcatheter valve repair and replacement
  • Congenital heart defect repair
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices
  • Pacemaker implantation
  • Implantable cardioverter defibrillator placement
  • Cardiac resynchronization therapy device placement
  • Standard SVT & VT ablation
  • Transcatheter AFib ablation

In very general terms, the category “cardiovascular diseases” (CVD) refers to a variety of acute and chronic medical conditions resulting in the inability of cardiovascular system to sustain an adequate blood flow and supply of oxygen and nutrients to organs and tissues of the body. The CVD conditions could be manifested by the obstruction or deformation of arterial and venous pathways, distortion in the electrical conducting and pacing activity of the heart, and impaired pumping function of the heart muscle, or some combination of circulatory, cardiac rhythm, and myocardial disorders

The scope of this report covers surgical and interventional therapeutic procedures commonly used in the management of acute and chronic conditions affecting myocardium and vascular system. The latter include ischemic heart disease (and its life threatening manifestations like AMI, cardiogenic shock, etc.); heart failure; structural heart disorders (valvular abnormalities and congenital heart defects); peripheral artery disease (and limb and life threatening critical limb ischemia); aortic disorders (AAA, TAA and aortic dissections); acute and chronic venous conditions (such as deep venous thrombosis, pulmonary embolism and chronic venous insufficiency); neurovascular pathologies associated with high risk of hemorrhagic and ischemic stroke (such as cerebral aneurysms and AVMs, and high-grade carotid/intracranial stenosis); and cardiac rhythm disorders (requiring correction with implantable pulse generators/IPG or arrhythmia ablation).

The report offers current assessment and projected procedural dynamics (2015 to 2022) for primary market geographies (e.g., United States, Largest Western European Countries, and Major Asian States) as well as the rest-of-the-world.

The cited procedural assessments and forecasts are based on the systematic analysis of multiplicity of sources including (but not limited to):

  • latest and historic company SEC filings, corporate presentations, and interviews with product management and marketing staffers;
  • data released by authoritative international institutions (such as OECD and WHO), and national healthcare authorities;
  • statistical updates and clinical practice guidelines from professional medical associations (like AHA, ACC, European Society of Cardiology, etc.);
  • specialty presentations at major professional conferences (e.g., TCT, AHA Scientific Sessions, EuroPCR, etc.);
  • publications in major medical journals (JAMA, NEJM, British Medical Journal, etc.) and specialty magazines (CathLab Digest, EP Digest, Endovascular Today, etc.);
  • findings from relevant clinical trials;
  • feedbacks from leading clinicians (end-users) in the field on device/procedure utilization trends and preferences; and
  • policy papers by major medical insurance carriers on uses of particular surgical and interventional tools and techniques, their medical necessity and reimbursement.

Surgical and Interventional Procedures Covered in the report include:

  • Coronary artery bypass graft (CABG) surgery;
  • Coronary angioplasty and stenting;
  • Lower extremity arterial bypass surgery;
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting;
  • Peripheral drug-coated balloon angioplasty;
  • Peripheral atherectomy;
  • Surgical and endovascular aortic aneurysm repair;
  • Vena cava filter placement
  • Endovenous ablation;
  • Mechanical venous thrombectomy;
  • Venous angioplasty and stenting;
  • Carotid endarterectomy;
  • Carotid artery stenting;
  • Cerebral thrombectomy;
  • Cerebral aneurysm and AVM surgical clipping;
  • Cerebral aneurysm and AVM coiling & flow diversion;
  • Left Atrial Appendage closure;
  • Heart valve repair and replacement surgery;
  • Transcatheter valve repair and replacement;
  • Congenital heart defect repair;
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices;
  • Pacemaker implantation;
  • Implantable cardioverter defibrillator placement;
  • Cardiac resynchronization therapy device placement;
  • Standard SVT & VT ablation; and
  • Transcatheter AFib ablation

In 2016, cumulative worldwide volume of the aforementioned CVD procedures is projected to approach 15.05 million surgical and transcatheter interventions. This will include:

  • Roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • Close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • About 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • Over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • More than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • Close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • Over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • Almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

During the forecast period, the total worldwide volume of covered cardiovascular procedures is forecast to expand on average by 3.7% per annum to over 18.73 million corresponding surgeries and transcatheter interventions in the year 2022. The largest absolute gains can be expected in peripheral arterial interventions (thanks to explosive expansion in utilization of drug-coated balloons in all market geographies), followed by coronary revascularization (supported by continued strong growth in Chinese and Indian PCI utilization) and endovascular venous interventions (driven by grossly underserved patient caseloads within the same Chinese and Indian market geography).




The latter (venous) indications are also expected to register the fastest (5.1%) relative procedural growth, followed by peripheral revascularization (with 4.0% average annual advances) and aortic aneurysm repair (projected to show a 3.6% average annual expansion).

Geographically, Asian-Pacific (APAC) market geography accounts for slightly larger share of the global CVD procedure volume than the U.S. (29.5% vs 29,3% of the total, followed by the largest Western European states (with 23.9%) and ROW geographies (with 17.3%). Because of the faster growth in all covered categories of CVD procedures, the share of APAC can be expected to increase to 33.5% of the total by the year 2022, mostly at the expense of the U.S. and Western Europe.

Screen Shot 2016-08-12 at 9.48.46 AM

Source: MedMarket Diligence, LLC; Report #C500.

However, in relative per capita terms, covered APAC territories (e.g., China and India) are continuing to lag far behind developed Western states in utilization rates of therapeutic CVD interventions with roughly 1.57 procedures per million of population performed in 2015 for APAC region versus about 13.4 and 12.3 CVD interventions done per million of population in the U.S. and largest Western European countries.

See “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”, Report #C500 (publishing August 2016).

List of high growth medtech products

Below is a table with a list of the market segments demonstrating greater than 10% compound annual growth rate for the associated region through 2022, drawn from our reports on tissue engineering & cell therapy, wound management, ablation technologies, stroke, peripheral stents, and sealants/glues/hemostats. Products with over 10% CAGR in sales are shown in descending order of CAGR.

RankProductTopicRegion
1General, gastrointestinal, ob/gyn, othertissue/cellWW
2Ophthalmologytissue/cellWW
3Organ Replacement/ Repairtissue/cellWW
4Urologicaltissue/cellWW
5Neurologicaltissue/cellWW
6Autoimmune Diseasestissue/cellWW
7CV/ Vasculartissue/cellWW
8Bioengineered skin and skin substituteswoundRest of A/P
9Peripheral drug-eluting stents (A/P)peripheral interventionalA/P
10Peripheral drug eluting stentsperipheral interventionalRoW
11Peripheral drug-eluting stents (US)peripheral interventionalUS
12Negative pressure wound therapywoundGermany
13Hydrocolloid dressingswoundRest of A/P
14Cancertissue/cellWW
15Foam dressingswoundRest of A/P
16Growth factorswoundRest of A/P
17Alginate dressingswoundRest of A/P
18Dentaltissue/cellWW
19Bioengineered skin and skin substituteswoundJapan
20Hemostatssealants, glues, hemostatsA/P
21Skin/ Integumentarytissue/cellWW
22Bioengineered skin and skin substitutessealants, glues, hemostatsUS
23Bioengineered skin and skin substitutessealants, glues, hemostatsWW
24Film dressingswoundRest of A/P
25Surgical sealantssealants, glues, hemostatsA/P
26Hydrogel dressingswoundRest of A/P
27TAA Stent graftsperipheral interventionalA/P
28Negative pressure wound therapywoundRoW
29Biological gluessealants, glues, hemostatsA/P
30FoamwoundRoW
31HydrocolloidwoundGermany
32AAA Stent graftsperipheral interventionalA/P
33Cerebral thrombectomy systemsstrokeA/P
34High-strength medical gluessealants, glues, hemostatsA/P
35Carotid artery stenting systemsstrokeA/P
36Cardiac RF ablation productsablationA/P
37Alginate dressingswoundGermany
38Peripheral venous stentsperipheral interventionalA/P
39Cerebral thrombectomy systemsstrokeUS
40Left atrial appendage closure systemsstrokeA/P
41Cyanoacrylate gluessealants, glues, hemostatsA/P
42Foam dressingswoundRest of EU
43Foam dressingswoundKorea
44Cryoablation cardiac & vascular productsablationA/P
45Bioengineered skin and skin substituteswoundGermany
46Thrombin, collagen & gelatin-based sealantssealants, glues, hemostatsA/P
47Cardiac RF ablation productsablationRoW
48Bioengineered skin and skin substituteswoundRoW
49Microwave oncologic ablation productsablationA/P

Note source links: Tissue/Cell, Wound, Sealants/Glues/Hemostats, Peripheral Stents, Stroke, Ablation.

Source: MedMarket Diligence Reports