Medtech Startups, 2010-2015

From 2010 to present (Oct 2015), as included in the Medtech Startups Database, MedMarket Diligence identified 442 new (under one year old) medical technology startups whose businesses encompass, alone or in combination, medical devices, diagnostics, biomaterials, and the subset of both biotech and pharma that is in direct competition with medical devices, including tissue engineering and cell therapy. Of these, 74% were founded in the U.S., 5% were founded in Israel, and the rest were founded in 18 other countries.

Companies in the database have been categorized by clinical and/or technology area of focus, with multiple categories possible (e.g., minimally invasive and orthomusculoskeletal and surgery). Below is the composition of the companies identified from Jan. 2010 to Oct. 2015.

Screen Shot 2015-10-06 at 4.50.10 PM

Source: Medtech Startups Database

Below is a graphic on the companies by country. The U.S. (not shown) led with 327 companies.

Screen Shot 2015-10-06 at 4.17.30 PM

Source: Medtech Startups Database

In the U.S., the breakdown by state, other than California and its 466 companies (excluded only to show states with significantly lower numbers), is as follows:

Screen Shot 2015-10-06 at 5.13.08 PM

Source: Medtech Startups Database

 

Medtech succeeds by responding to multiple demands

Medtech is resilient, adapting to the changing demands of patients, payers, regulators, and the economy, but only in the hands of the innovators who keep a finger in the wind on these demands.

  1. Comprehensive outcomes versus symptomatic intervention. Competition in medtech, heightened by cost pressures in particular, is characterized by the demand for comprehensive solutions to disease/trauma rather than technologies that simply ameliorate symptoms. Manufacturers are focusing on longer term solutions, competing against the full spectrum of therapeutic alternatives rather than incremental improvements in their widgets.
  2. Whatever the cost, make it lower. Cost is poorly understood in healthcare (hence the problem!), but it is recognized as important simply by the rate at which premiums increase, the percentage of GDP adding to healthcare spending, the cost of Medicare and other similar benchmarks. Cost is difficult to assess in medical technologies, because there are long term, unforeseen implications of nearly every medtech development. Nonetheless, the manufacturer who does not only bow down in homage to cost but also makes cost at least an implicit part of its value proposition will be quickly put out of business.
  3. The life spans of “gold standards” of treatment are getting shorter and shorter. Technology solutions are being developed, from different scientific disciplines, at such a pace as to quickly establish themselves, in a broad enough consensus, as new gold standards. Physicians are increasingly compelled to accept these new new standards or find their caseload shifting to those who do.
  4. Many manufacturers strive for being able to claim their products are “disruptive” — overturning existing paradigms. However, few medtech manufacturers really ever achieve anything more than marginal improvements. Note the relative amount of 510Ks versus PMAs in regulatory approvals (not that a PMA denotes a “disruptive” development).
  5. Materials technologies are defining what is a “device” as well as what they can accomplish. Competitive manufacturers are aggressively gaining a broad understanding of materials technologies to encompass traditional device, pharma, biopharma, biotech, cell biology and others, ensuring their success from a broadly competitive position.
  6. Interest in startup innovations by VCs and large-cap medtech companies has never been more intense, but funding still demands concrete milestones. Proof-of-concept gets entrepreneurs excited, but 510(K) or better is what gets the money flowing. This is not the credit-crunch of 2008, when the sour economy caused funding to largely dry up. Money is indeed flowing into medtech now, as evidenced by the IPO market and the volume of early stage funding, but potential investments — especially at very early stages — are no less intensively vetted. Startups must therefore carry the risk well into the development timeline, when the prospect of their products reaching the market has been demonstrated far more effectively.
  7. Medtech markets are influenced by many forces, but none more strongly than the drive of companies to succeed. Reimbursement. Regulatory hurdles. Healthcare reform. Cost reduction, even a 2.3% medical device excise tax, et cetera, et cetera. None of these hold sway over innovation and entrepreneurship. And the rate of innovation is accelerating, further insulating medtech against adverse policy decisions. Moreover, that innovation is reaching a sort of critical mass in which the convergence of different scientific disciplines — materials technology, cell biology, biotech, pharma and others — is leading to solutions that stand as formidable buttresses against market limiters.
  8. Information technology is having, and will have, profound effects on medical technology development. The manufacturers who “get” this will always gain an advantage. This happens in ways too numerous to mention in full, but worth noting are: drug and device modeling/testing systems, meta-analysis of clinical research, information technology embedded in implants (“smart” devices), and microprocessor-controlled biofeedback systems (e.g., glucose monitoring and insulin delivery). The information dimension of virtually every medtech innovation must be considered by manufacturers, given its potential to affect the cost/value of those innovations.

This is not a comprehensive list of drivers/limiters in medtech, but these stand behind the success or failure of many, many companies.

Patrick Driscoll is an industry analyst and publisher of content on advanced medtech markets through MedMarket Diligence.

New Medical Technologies at Startups, May 2015

Below is the list of technologies under development at medical technology companies identified in May 2015 and included in the Medtech Startups Database.

  • Nanotechnology-based diagnostic
  • Bone fixation devices, including for post-sternotomy closure
  • Devices and materials for bone lengthening
  • Nanopolymer drug delivery
  • Developing an artificial pancreas; combined blood glucose monitor and insulin pump
  • Terahertz radiation-based measurement of blood glucose
  • Patient-specific orthopedic implants
  • Undisclosed medical technology
  • Novel energy delivery-based medical technology
  • Device for early detection of cardiovascular disease based on endothelial dysfunction
  • Facet joint surgical instruments
  • Neuromodulation technology
  • Electric stimulation in wound healing
  • Mesenchymal stem cell treatment in cardiology, transplantation, and autoimmunity
  • Integrated blood glucose monitor, insulin dosing
  • Surgical instrumentation

For a historical listing of technologies at medtech startups, see link.

 

The Five Biggest Medical Technology Forces

There are five fundamental forces driving change in virtually every medical technology market. (There are many other forces, of course, that impact these markets, such as regulation, reimbursement, etc., but here I speak of forces driven by technology and the innovators employing them.) They represent challenges and opportunities — depending merely upon how companies perceive and respond to them.

Devices are no longer devices (only).

An inert medical or plastic device is likely to present little competitive threat. The device that succeeds stretches the boundaries of what a device is. Devices can be:

  • Biocompatible
  • Bioresorbable
  • Bioactive
  • Shape-shifting (e.g., nitinol)
  • Hybridized with drugs, cells, other biologics
  • Integrated with RFIDs and sensors
  • Combinations of the above

Competition comes from all directions. And so does opportunity.

Competition in medical technology has long since been defined by the device, having been replaced by the definition of the specific problem solved. And that problem is the disease state and the costs of managing and/or eliminating it. (An angioplasty catheter’s competition is not just angioplasty catheters, but also drug-eluting and/or bioresorbable coronary stents, drug-coated balloons, atherectomy, minimally invasive coronary artery bypass graft, atherosclerotic plaque-reducing drugs, etc.) Successful innovators consider all possible alternatives to solving the disease state need and define themselves by the solution, not the product. The only limitation a manufacturer has is its willingness to pursue all avenues to solving the problem.

Zero invasiveness.

Any technology that is not focused on the ideal of zero collateral damage, zero complications, and zero adverse side-effects will be threatened by those that do. The advances in materials technologies, medical/surgical techniques and understanding of pathology, among other advances, are sufficient to challenge manufacturers to pursue the goal of zero invasiveness. Just as open surgery has evolved to incisionless surgery, medical technologies increasingly take on the potential to be more like drugs, or better — treating the disease on a one-time basis with no complications whatsoever.

Decentralized, point-of-care technology.

Capital equipment is expensive, big and lethargic. A handheld imaging — ultrasound, even MRI — performed at the patient’s bedside or doctor’s office, offers enormous potential to reduce cost and increase clinical utility. But decentralization is not limited to diagnosis, since treatment is the ultimate goal and its incentives are the same. Of course, the trend moving diagnostics and therapeutics from the centralized to the point-of-care is not a new idea, but the reality is that a whole range of therapeutic devices (e.g., numerous ablation modalities) have been developed that no longer require OR suites, general anesthesia and their associated costs, and imaging systems have been shrinking to the point that words like “handheld” and “MRI” can be used in the same sentence (see Butterfly Network).

Research and development tools eliminate excuses.

R&D is inevitably challenged to evaluate ideas thoroughly, considering difficult-to-anticipate obstacles and rapidly evaluating ideas to reveal the best prospects and bring them to manufacturing, then to market. But multiple technologies have been developed and put into use that can accelerate the iterative cycles of development and yield prime product candidates to bring to market — biotech, pharma, biopharm, device, drug/device and others.  Computer modeling of hemodynamic blood flow, computer simulation of drug candidates (hybridized with devices or not), 3D printing (prototypes, custom implants) and many other advances are rapidly accelerating development of products that more perfectly fit the need.

 

Glucose monitoring research drives more promises than answers

If I had a nickel for every headline like this that ultimately failed, like the technology, to actually achieve the promise, I would be on a tropical beach sipping pina coladas:

“Glucose monitoring for diabetes made easy with a blood-less method” (link)

Technologies in development for less-invasive or non-invasive glucose monitoring are legion, and many are very promising, but you can’t fill out a deposit slip with these promises. Frequently, such alternatives are based on the premise of quantifying blood glucose by sensitively detecting glucose in other fluids (interstitial fluid, tears, saliva, urine, etc.) that do not require the use of lancets to draw blood. However, despite their sensitivity and other sophistication in detecting minute quantities of glucose, their “arm’s length” to actual blood glucose compounds the challenge by requiring that the test reproducibly correlate the sample values with actual, current blood glucose levels.

The challenge stands unanswered, while the burgeoning population of endlessly finger-pricked diabetics remains painfully unsatisfied.

As a practical reality, continuous blood glucose monitors like those from Dexcom and Medtronic offer far more to the diabetic population, not only by avoiding finger pricks but also by revealing the patterns in blood glucose levels over time as a result of activity, carbohydrate intake, insulin bolus, insulin basal rate, stress and countless other patient-specific determinants.

The amount of medtech funded is often less than half the story

In tracking venture capital or other money flowing into “medtech”, I am frequently struck by how often the numbers that are presented as evidence tell only part of the picture, like one of the several blindfolded men touching different parts of an elephant tasked with identifying what it is they are touching.

Recent results from Pricewaterhouse Coopers on Q1 2014 venture capital paints a picture illustrating an 11% increase from Q1 2013 to Q2 2014 in total funding for “medical device” companies, with a drop in the number of deals, from 29 to 25.

There are two problems with this, the first being that the fundings data so presented is only looking at “medical device” companies, the second being that we have no evidence on the number of companies seeking funding in either year.

First, talking about medical devices in 2014 is a lot like talking about horses in 1910.  Neither one tells the whole story of the markets in which they very clearly compete. Second, while the amount of money actually funded by VC in 2014 versus 2013 is obviously important (especially to the recipients), the number and size of the deals rejected in both years is also rather important as well (especially to the non-recipients).

So, what should be presented differently? Well, tracking the “medical device” industry is just not relevant anymore (I’ve already argued this ad nauseum), since medical devices don’t just compete with medical devices anymore — for clinical applications or venture funding. In my opinion, the tracking of funding should first look at funding in, say, coronary artery disease treatment (i.e., “disease state”), then consider the share of that funding that is going toward this or that therapeutic option. As for the amount funded, would it not be meaningful to all involved to track the amount of actual versus proposed funding, especially if the proposed funding was limited to actual deals that were ultimately accepted or rejected?

Below is the amount of funding in “medtech”* by month from January 1, 2009, to May 21, 2014, presented both as an annual overlay to reflect seasonality and as a continuum, with a linear trendline.

Screen Shot 2014-05-21 at 1.02.36 PM

 

 

Screen Shot 2014-05-21 at 1.12.37 PM

Source: MedMarket Diligence, LLC

_________________________
*What is “medtech”?: We view medical technology (medtech) as principally medical devices and equipment, but also all technologies that are directly competitive with or complementary to technologies represented by therapeutic or diagnostic medical devices/equipment.

Note: Historic coverage of “medtech” has been limited to medical devices, supplies and equipment. We feel that such a limited definition poorly reflects the true nature of the markets that once were limited to such products. In reality, assessing the markets and competition for medical devices by ONLY considering other medical devices would result in gross underestimations of both competition and market potential. Moreover, this is reflected in both the nature of medical devices, which may be hybrid device/bio/pharm products or products that may not be “devices” at all, especially in the typical definitions defined by material type and function, but that compete head-on with devices.

 

Where will medicine be in 20 years?

(This question was originally posed to me on Quora.com. I initially answered this in mid 2014 and am revisiting and updating the answers now, in mid 2015.)

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, whether it is Obamacare, a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective.

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions.
    [View Aug. 2015: Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it.] 
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.
    [View Aug. 2015: Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics.] 
  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.
    [View Aug. 2015: Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines.] 
  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    [View Aug. 2015: Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, long-term and/or less costly solutions.] 

  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.
    [View Aug. 2015: It’s a double-edged sword with the human genome. As the human blueprint, It is the potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions.] 
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.
    [View Aug. 2015: The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.] 
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.
    [View Aug. 2015: By 2035, technologies such as these will have measurably reduced inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of the NOTES technology platform. A wide range of technologies across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit without collateral damage.] 
  • Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.
    [View Aug. 2015: There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits.]
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.
    [View Aug. 2015: This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.]

There will be many more unforeseen medical advances achieved within 20 years, many arising from research that may not even be imagined yet. However, the above advances are based on actual research and/or the advances that have already arisen from that research.

Newest Medtech Startups, and I do mean MEDTECH

Since you’re reading this, I am going to assume you have some interest in medical technology, and just to make it bluntly obvious, I’m going to hammer a definition of it so you know exactly what I mean and what I don’t mean. Why I do this will become clear, but simply put, it’s to keep me from going insane.

In the most liberal definition of “medical technology” (which can still be restrictive, as I’ll mention below), I mean “the adaptation of scientific knowledge to the practical application of medicine”.  In your travels, I am certain you have come across uses of the term “medtech” that seem expansively broad, such as those that are simply the application of virtually any kind of technology to medicine.

If you call your doctor, does that make your phone a medtech device? What about surgical gloves, since they’re really just gloves? Ah, but what about surgical gloves coated with a material that prevents formation of post-surgical adhesions? Then, too, what about devices for wireless transmission of BP, pulse, pCO2 and other vital signs — are they just glorified telephones?

The point is that there is a wide range of perspectives that may variously be brought to bear when considering medtech and, since not everyone has the same perspective, it’s important to understand which perspective is in play.

Today, I saw a post about “medtech” companies at this year’s SXSW conference. Intrigued, I read on, only to find that most of these are technologies that have been applied to medical applications (and some not even that), but are for the most part not “medical technologies”:

  • a medication compliance device that chimes when doses are missed
  • a thermometer that connects to your iPhone or Android device
  • a smart diaper that monitors select analytes to potentially reveal UTIs, type 1 diabetes, dehydration, etc.
  • motion sensor-enabled underwear with micro-airbags to reduce injuries from falls in elderly
  • shoes to reduce the risk of plantar fasciitis, complications from diabetic neuropathy, etc.
  • wearable baby monitor to detect ambient temperature, posture and movement
  • mobile device to connect patients with mental health professionals
  • cloud-based service to connect individuals to the health/wellness resources of their employers

(Of course, the bottom line for many is whether the FDA or any other relevant governing body would consider a device a “medical device” or would otherwise conclude that its function, design or application is such that it must be regulated as a medical device, but even under that sort of all encompassing consideration, many of the above technologies would not likely be called “medical devices”. However, it’s not my definition that matters in those cases; it’s the FDA’s.)

I’m not placing a judgment that these devices are somehow inferior — not my point at all.  I have no doubt that there are countless non-medical technologies that can be applied to medical applications to create huge demand and/or solve big problems.  I just have to draw the line somewhere as I seek to describe, characterize and analyze an already large universe of innovations — I’ll leave the analysis of iPhone-enabled or otherwise information technology-centered devices to those who are better suited to the task. (If, in addition to the implants, surgical devices and range of other technologies requiring a physician to actually use, I had to also analyze any of those iPhone-enabled widgets, I would go mad.) My focus is instead on innovations that are intrinsically medical applications of knowledge that have been developed to improve outcomes, tap unmet patient demand, reduce healthcare costs or otherwise improve healthcare delivery. 

Fundamentally, these are technologies that have been developed to reduce symptoms, hasten recovery from disease or trauma (surgically-induced or otherwise), facilitate the removal of malignant tissue, restore normal organ or system function, facilitate the ongoing management of chronic disease, provide differential diagnostic information to facilitate courses of treatment, and many, many similar. By now, you should have a sense of what technology I would consider “medical” and what technology may have a medical application but which is not itself “medical”.

So what? Well, to be very specific, these are the most recent additions of startup companies to our Medtech Startups Database:

CompanyProduct/technology
Medallion Therapeutics, Inc.Targeted, localized drug delivery
PB&B S.A.Use of biomaterials in aesthetics for non-surgical temporary & permanent breast and buttock enhancement, facial rejuvination solutions and adipose tissue engineering related therapies.
TS3 Medical, Inc.Vascular drill to cross chronic total obstructions (CTOs) and facilitate balloon angioplasty and stenting.
SynerZ Medical, Inc.Developing a device that mimics the actions of gastric bypass surgery for the treatment of obesity and Type 2 diabetes.
Biotrace Medical, Inc.Temporary cardiac pacing as treatment for reversible symptomatic bradycardia.
Rbpark, LLCEmbolectomy devices
NeuroTek Medical, Inc.Non-invasive, migraine therapy device worn on the back of the head at the onset of or during a migraine to relieve pain.
RegenEye, LLCOcular stent for treating age-based vision changes.
Reveal Optical, LLCOphthalmic device company focusing on age-related macular degeneration (AMD), diabetic retinopathy, retinitis pigmentosa, hemianopia, and glaucoma.
Mimedis AGCustom surgical implants including using 3D printing.
Socrates Health Solutions, Inc.Noninvasive blood glucose monitor.
Gecko BiomedicalBiodegradable sealants and adhesives in surgery.

Source: MedMarket Diligence, LLC

Entrepreneurs have for years been relentlessly conceiving and implementing innovations for therapeutics and diagnostics that leverage the advances in materials sciences and the individual and combined gains in understanding the onset, development and intervention to palliate, cure or otherwise eliminate disease.  Developments such as these have had a profound impact on patients’ lives and the costs (of all kinds) in the end result. 

Combine these medtech developments with other non-medtech developments in additional innovative ways and an even bigger impact can be made. 

The Real Future of Medtech: An Opinion

I see graphics (and, please help me, “infographics”) on the the future of medtech. These are graphics produced most often by analysts who are walking backward looking at their feet; in other words, living by the tenet of “past is prologue”. The leading companies of five years from now can be simply predicted by a 5-year extrapolation of last year’s revenue growth.  Has “forecasting” really simply become a distillation of “more of the same”?

The future of medtech is dictated far more importantly by not what has already happened, or some expectation that past trends will simply continue on into future trends, but by what has not happened yet. The major thrust of any significant growth (and isn’t growth that in which we are most interested?) comes primarily from events that have not yet happened. Do you want to be Steve Jobs or Steve Ballmer?  Do you want to create demand or belatedly follow it?

If you have a short-sighted or narrow view, then you consider your competitors all who do what you do but who do it better, faster or cheaper. If you have a long view, you consider what might be possible based on available/emerging technology to tap into untapped demand or simply create latent demand that no company has yet been sufficiently visionary or innovative to seize.  What patient populations, clinical practice patterns and their trends are the pulse that you monitor (or are you even monitoring these)?  There is a gap between what is available and a whole set of patients virtually untreated, physicians unsatisfied, and third party payers struggling.  Are you an angioplasty catheter manufacturer — or a coronary artery disease solution?  Do you make devices — or outcomes?

Look at staid “device” companies like Baxter International and see that they have “biosurgery” divisions.  Look at Medtronic and appreciate that they are as sensitive to developments in glucose monitoring and insulin pump technologies as they are to the litany of cell therapy approaches under pursuit.

Virtually every area of current clinical practice is subject to change when considering drug/device hybrids, biomaterials, nanotechnology/MEMs devices and coatings, biotechnology, pharmaceutical (and its growing sophistication in drug development), western medicine and eastern medicine, healthcare reform, cost containment, RFIDs, 3D printing, information technology  — we hope you see the upside in this and not just the downside.

Of course companies, especially public ones, must consider the revenue streams in both Year 0 and Year 5, but if the focus is only on Year 0, then that number will also be the ROI in five years.

 

 

Medtech from incremental to quantum leap advances

Advanced medical technologies become advanced by the application of innovation that results in more effective, less costly or otherwise arguably better outcomes (including reduced risk of complications or disease recurrence) for patients, including in some cases enabling treatment when none was previously possible. It is intrinsic to every entrepreneur that the idea he/she is pursuing accomplishes this.

Manufacturers of products on the market have an imperative to either improve upon those products or make them obsolete. This imperative is manifested in a spectrum of planned innovation from simple incremental innovations to the quantum leap of a radically new approach.

There is an enormous amount of technology development, often applicable to multiple different clinical applications, that will be realized in product markets in the future. For the moment, though, I would like to look beyond “incremental improvements” or “product line extensions” or other marginal advances that serve little more than superficially addressing shortcomings of existing products on the market. I would like to look at waves of innovation coming in the short to long term that are expected to impact medtech in ways that are increasingly “radical” or represent varying orders of magnitude of improvement in results.

Three categories spanning short, mid, and long reflect what I see in medtech development. Below, I outline the nature of each and the specific examples that are or will be emerging.

Short term. With change encompassing technologies that are just sufficiently different so that they cannot simply be called incremental innovations, some short term advances often combine two or more complementary and/or synergistic technologies in new ways to advance healthcare. Examples include:

  • Image-guided surgeries to augment the surgeon’s ability to navigate complex anatomy or discern the margins of healthy versus disease tissue.
  • Natural orifice endoscopic surgery (and shift in general from invasive to interventional and intraductal procedures) to either drastically reduce or eliminate the trauma of surgical access
  • Non-invasive therapeutics (like lithotripsy, gamma knife, others) to treat disease without trauma to collateral tissues.
  • Genome-driven treatment profiling (prescreening to determine ideal patients with high probable response).
  • Personalized (custom) implants. These already exist in orthopedics, but the potential for customized implants in gastroenterology, cardiology, and many other clinical areas is wholly untapped.
  • Regenerative technologies (bone, skin, other). These technologies represent introductory markets with lowered challenge compared to more complex functional anatomy (e.g., vital organs).
  • Smart devices (implantable sensors, RFID-tagged implants, etc.) to provide data to clinicians on implant location and status or, in the extreme respond diagnostically or therapeutically to changes in the implant’s immediate environment.

Mid-term. These are new therapeutic options that are fundamentally different than those in current use for a given treatment option. These are technologies that have demonstrated high probability of being feasible in large scale use, but have not yet accumulated enough clinical data to warrant full regulatory approval.

  • Nanotech surface technologies for biocompatibility, localized treatment delivery or other advantages at the interface between patient and product.
  • Materials that adapt to changes in implant environment, to maintain pH, to release drugs, to change shape.
  • Artificial heart. A vital organ replacement that currently has demonstrated the capacity to be a bridge to transplant but has also advanced sufficiently to open the possibility of permanent replacement in the not-too-distant future.
  • Cell/device hybrids. These are organ replacements (e.g., kidney, lung, liver) performing routine function or natural organs, but configured in a device to address unresolved issues of long term function, immune response and others.
  • Artificial organs (other than heart) — closed loop glucometer/insulin pump (artificial pancreas). These are not even partial biological representations of the natural organ, but completely synthetic “organs” that intelligently regulate and maintain a steady state (e.g., blood glucose levels) by combining the necessary functions through combined, closed-loop mechanical means (an insulin pump and glucometer with the necessary algorithms or program to independently respond to changes in order to otherwise maintain a steady state.

Long-term. Orders of magnitude, quantum shift, paradigm shift or otherwise fundamentally different means to serve clinical need.

  • 3D implant printing. In a recent example, in an emergency situation a 3D implant for repair of a infant’s trachea was approved by the FDA. These implants, as in the case of the trachea repair, will most often be customized for specific patients, matching their specific anatomy and may even include their (autologous) cells. They may also be made of other materials including extracellular matrices that will stimulate natural cell migration followed eventually by bioabsorption of the original material. Depending upon type of material and complexity of the anatomy, these technologies may emerge in the near or distant future.
  • Gene therapies. Given the root cause of many diseases has a genetic component or is entirely due to a genetic defect, gene therapies will be “permanent corrections” of those defects. An enormous number of hurdles remain to be crossed before gene therapies are largely realized. These deal with delivery and permanent induction of the corrected genes into patients.
  • Stem cell therapies. The potential applications are many and the impact enormous of stem cell therapies, but while stem cell technology (whether for adult or embryonic) has made enormous strides, many challenges remain in solving the cascade of differentiation while avoiding the potential for aberrant development of these cells, sometimes to proliferative (cancerous) states.
  • “Rational” therapeutics. Whether by stem cell therapies, gene therapies or other biochemical or biological approach, “rational” therapeutics represent the consummate target for medical technology. Such therapeutics are “rational” in the sense that they perfectly address disease states (i.e., effect cures) without complication or need for recurrent intervention.

There are certainly more holes than fabric in this tapestry of short-, mid- and long-term technology innovation, but this should serve to illustrate the correlation between the sophistication of the potential medtech solution and the level of technical challenge in order to achieve each.