Peripheral Vascular Stents

The market for stents used in peripheral vascular indications — inclusive of stent grafts, and arterial and venous stents — is growing at an aggregate 6.2% CAGR from 2016 to 2020, which belies much stronger growth in specific subsets, especially in emerging markets like Asia/Pacific.

The aggregate compound growth rates for peripheral stent markets in each global region is shown below, with growth rates weighted by individual segment sales:

U.S.:  9.5%
Western Europe: 5%
Asia/Pacific: 21.3%
Rest of World: 13.9%

Peripheral stent products include the following, each of which is growing in sales at varying rates above and below the aggregregate regional sales growth:

Peripheral Arterial Stenting

– Bare Metal Stent Devices

– Drug Eluting Stent Devices

Aortic Aneurysm Repair

– Abdominal AA Stent-Grafts

– Thoracic AA Stent-Grafts

Peripheral Venous Stents

 

Worldwide Peripheral Stent Market by Product Category, 2015 and 2020

Screen Shot 2016-08-08 at 12.49.53 PM

Source: MedMarket Diligence, LLC; Report #V201.

USA and Asia/Pacific Size Versus Growth in Sealants, Glues, Hemostats

The market dynamics in Asia/Pacific stand apart from those in the U.S. In the case of surgical sealants, glues, and hemostats, what stands out is the Size versus Growth metric.

Much of the potential in China, in particular, remains untapped (low volume, high growth), while in the U.S., these markets are more well established and, therefore, more penetrated.

Below are the size/growth “bubbles” for, alternating, the U.S. and Asia/Pacific.

output_dYHN2K

Source: MedMarket Diligence, LLC; Report #S290.

Top Cardiovascular Surgical and Interventional Procedures, Projected to 2022

Below, after the categories of cardiovascular procedures, are the comprehensive listings of the surgical and interventional procedures in the management of cardiovascular disease represented in the MedMarket Diligence Report #C500, which also analyzes the clinical practice patterns, trends, and the impact on medical device sales and the impact of new medical device introductions during the forecast period, addressing each major area of surgical and interventional cardiovascular medicine:

Surgical and Interventional Procedures Covered:

  • Coronary artery bypass graft (CABG) surgery
  • Coronary angioplasty and stenting
  • Lower extremity arterial bypass surgery
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting
  • Peripheral drug-coated balloon angioplasty
  • Peripheral atherectomy
  • Surgical and endovascular aortic aneurysm repair
  • Vena cava filter placement
  • Endovenous ablation
  • Mechanical venous thrombectomy
  • Venous angioplasty and stenting
  • Carotid endarterectomy
  • Carotid artery stenting
  • Cerebral thrombectomy
  • Cerebral aneurysm and AVM surgical clipping
  • Cerebral aneurysm and AVM coiling & flow diversion
  • Left Atrial Appendage closure
  • Heart valve repair and replacement surgery
  • Transcatheter valve repair and replacement
  • Congenital heart defect repair
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices
  • Pacemaker implantation
  • Implantable cardioverter defibrillator placement
  • Cardiac resynchronization therapy device placement
  • Standard SVT & VT ablation
  • Transcatheter AFib ablation

We have sorted procedures first by growth (CAGR) to 2022, then by volume in 2022.

CV Procedures by Growth

Source: MedMarket Diligence, LLC; Report #C500.

CV Procedures by Volume

Source: MedMarket Diligence, LLC; Report #C500.

Cardiovascular Surgical Procedures, Technologies Trended Globally to 2022

cardiovascular procedures

Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022. See Report #C500.

Publishing July 2016

This report covers surgical and interventional therapeutic procedures commonly used in the management of acute and chronic conditions affecting myocardium and vascular system. The latter include ischemic heart disease (and its life threatening manifestations like AMI, cardiogenic shock, etc.); heart failure; structural heart disorders (valvular abnormalities and congenital heart defects); peripheral artery disease (and limb and life threatening critical limb ischemia); aortic disorders (AAA, TAA and aortic dissections); acute and chronic venous conditions (such as deep venous thrombosis, pulmonary embolism and chronic venous insufficiency); neurovascular pathologies associated with high risk of hemorrhagic and ischemic stroke (such as cerebral aneurysms and AVMs, and high-grade carotid/intracranial stenosis); and cardiac rhythm disorders (requiring correction with implantable pulse generators/IPG or arrhythmia ablation).

The report offers current assessment and projected procedural dynamics (2015 to 2022) for primary market geographies (e.g., United States, Largest Western European Countries, and Major Asian States) as well as the rest-of-the-world.

See the complete table of contents at Report C500.

 

 

Where is the medtech growth?

Medical technology is, for many of its markets, being forced to look for growth from more sources, including emerging markets. Manufacturers are able to gain better margins through innovation, but their success varies by clinical application.

Cardiology. A demanding patient base (it’s life or death). Be that as it may, there are few new or untapped markets, only the opportunity for new technologies to displace existing markets. Interventional technologies are progressively enabling treatment of larger patient populations, but much growth will still be from emerging markets.

Wound management. Even the most well-established markets will see growth from innovation. The wound market just needs less growth to be happy, since small percentage growth becomes very large by volume. And yet, some of the most significant growth in the long run will be for more advanced

Surgery. Every aspect of surgery seems to be subject to attempts to improve upon it. Robotics, endoscopy, transcatheter, single-port, incisionless, natural orifice. Interventional options are increasing the treatable patient population, and it seems likely that continued development (e.g., materials, including biodegradables, use of drug or other coatings, including cells) will yield more routine procedures for more and different types of conditions, many of which have been inadequately served, if it all.

Orthopedics. Aging populations demanding more agility and mobility will drive orthopedic procedures and device use. Innovation still represents some upside, but more from 3D printing than other new technologies being introduced to practice.

Tissue/Cell Therapy. This is a technology opportunity (and represents radical innovation for most clinical areas), but it is also a set of target clinical applications, since tissues/cells are being engineered to address tissue or cell trauma or disease. Growth is displacing existing markets with new technology, such as bioengineered skin, tendons, bladders, bone, cardiac tissue, etc. These are fundamentally radical technologies for the target applications.

Below is my conceptual opinion on the balance of growth by clinical area coming from routine innovation (tweaks, improvements), radical innovation (whole new “paradigms” like cell therapy in cardiology), and emerging market growth (e.g., China, S. America).

Screen Shot 2016-06-22 at 1.56.13 PM

Source: MedMarket Diligence, LLC.

Cerebral Aneurysm and AVM Embolization Systems

The ultimate objective of cerebral endovascular embolization is to hemoisolate rupture-prone or ruptured neurovascular abnormality from cerebral circulation with the view of preventing major primary or secondary hemorrhage into intracranial space. Technically, cerebrovascular embolization is accomplished through a transcatheter deployment of one or several embolizing agents into the unstable aneurysmal sac or AVM’s fundus in the amount sufficient for eventually arresting an internal blood flow and prompting lesion obliteration.

In cases involving large, giant and wide neck aneurysms, stent-assisted coiling or coil-free flow diversion device-based embolization are typically utilized.

Cerebral endovascular embolization systems include microcoils and liquid embolics with associated transcatheter delivery devices (e.g., micro guidewires, microcatheters, etc.), as well as coil-containing stents and flow diversion devices.

In recent years, transcatheter embolization techniques have emerged as a mainstay treatment modality in repair of rupture-prone cerebral aneurysms and indispensable presurgical adjunct in treatment of intracranial AVMs.

Aside from the ongoing (but gradually moderating in the U.S. Europe and Japan) migration of patients from open surgical to minimally invasive neurovascular embolization techniques, consistent and robust growth in this market was driven by the introduction of improved and premium-priced embolic coil designs, launch of coil containing stents for wide neck aneurysms, and increasing utilization of user-friendly liquid embolics in AVM (and selected wide neck aneurysm) applications.

In the forthcoming years, the cited growth factors are likely to stay in place supporting further expansion of cerebral aneurysm and AVM transcatheter embolization business.

In 2014, endovascular embolization techniques were employed in approximately 90.5 thousand cerebral aneurysm and AVM repair procedures worldwide, of which aneurysm targeting interventions accounted for about 89.2%, with the rest contributed by AVMs hemoisolation.

Cumulative global sales of cerebral endovascular embolization products were estimated at about $851 million in 2014, of which U.S. accounted for $339.8 million (or 39.9%), followed by the largest Western European states with 242.1 million (or 28.5%), major Asian-Pacific states with $178.9 million (or 21.1%), and the rest-of-the-world with the remaining $89.4 million (or 10.5% of the total).

During the forecast period, the total global volume of transcatheter neurovascular embolization procedures is projected to grow 4% per annum to an estimated 109.9 thousand interventions in the year 2019. The largest absolute and relative gains in cerebral embolization procedure volumes are expected in the largest Asian-Pacific states (mostly China) and the Rest-of-the-World, where low relative usage of endovascular techniques (30-35% versus 65-75% in the U.S. and Europe) will continue to support their increasing penetration of clinical practices and serve as the primary locomotive of growth in the corresponding global product market. Largely mature U.S. and West European market geographies are likely to register considerably more modest advances in cerebral embolization procedure volumes.

The worldwide sales of cerebral aneurysm and AVM embolization products are forecast to expand at a slightly slower 3.6% average annual rate to an estimated $1,017 million in the year 2019. The largest relative and absolute gains in the market can be expected in the flow diversion system segment which is projected to grow an average of 20.7% annually and add over $96 million in product sales to a total of $157.7 by 2019.

Geographically, grossly underpenetrated Asian-Pacific and ROW markets are likely to register the fastest growth expanding 7.1% and 7.6% per annum to approximately $253.3 million and $128.9 million in 2019, accordingly.


From, “Emerging Global Market for Neurointerventional Technologies in Stroke, 2014-2019,” Report #C310.

Medtech midterm; Cardiovascular procedures; Wound shifts; Fundings

d5472bf8-1237-4ecc-a976-28a1b2fc7f3f.jpg

advanced medical technologies

A weekly(ish) newsletter to our blog subscribers.
From MedMarket Diligence, LLC
(Make note of this code: “Optinthirtyoff”)

From “Medtech is Dead. Long Live Medtech“, here is some of what we can expect in the next 5-10 years in medtech:

  • Type 1 diabetes gradually becomes less burdensome, with fewer complications, and improved quality of life for patients.
  • Type 2 diabetes continues to plague Western markets in particular, despite advances in diagnosis, treatment, and monitoring due to challenges in patient compliance.
  • Cancer five year survival rates will dramatically increase for many cancers. The number of hits on Google searches for “cure AND cancer” will reflect this.
  • Multifaceted approaches available for treatment of traumatic brain injury and spinal cord injury – encompassing exoskeletons to help retrain/rehabilitate and increase functional mobility, nerve grafting, cell/tissue therapy, and others.
  • Organ/device hybrids will proliferate and become viable alternatives to transplant, or bridge-to-transplant, for pulmonary assist, kidney, liver, heart, pancreas and other organ.
  • Stem cells have had dramatic success, and the science will have improved, but challenges remain, especially since the excitement around stem and other pluripotent cells has created a climate not far removed from the wild west – the potential of such open territory being up for grabs has drawn hordes of activity, not all in the best interests of patients or shareholders. But in this time frame, specific treatments will likely have become standards of care for some diseases, while the challenge and opportunity remain for many others.
From “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”.

Cardiovascular Surgical and Interventional Procedures

  • Coronary Artery Bypass Graft Surgery
  • Coronary Mechanical and Laser Atherectomy
  • Coronary Angioplasty and Stenting
  • Mechanical Thrombectomy
  • Ventricular Assist Device Placement
  • Total Artificial Heart
  • Donor Heart Transplantation
  • Lower Extremity Arterial Bypass Surgery
  • Percutaneous Transluminal Angioplasty (PTA) and Bare Metal Stenting
  • PTA and Drug-Eluting Stenting
  • PTA with Drug-Eluting Balloons
  • Mechanical and Laser Atherectomy
  • Catheter-Directed Thrombolysis and Thrombectomy
  • Surgical and Endovascular Thoracic Aortic Aneurysm Repair
  • Surgical and Endovascular Abdominal Aortic Aneurysm Repair
  • Vena Cava Filter Placement
  • Endovenous Ablation
  • Venous Revascularization
  • Carotid Endarterectomy
  • Carotid Artery Stenting
  • Cerebral Thrombectomy
  • Cerebral Aneurysm and Arteriovenous Malformation (AVM) repair
  • Congenital Heart Defect Repair
  • Heart Valve Repair and Replacement Surgery
  • Transcatheter Valve Repair and Replacement
  • Pacemaker Implantation
  • Implantable Cardioverter Defibrillator Placement
  • Cardiac Resynchronization Therapy Device Placement
  • Standard SVT Ablation
  • Surgical AFIb Ablation
  • Transcatheter AFib Ablation

See Report #C500, published August 2016.

From “Worldwide Wound Management, Forecast to 2024”, Report #S251, published December 2015

e40a6a3f-1b21-40de-98ba-3467c5698825.png
Source: Report #S251.

 

Selected Medtech Fundings, May 2016

7114c77d-d736-44de-89c4-cc3b76f8c6b8.png
Source: Compiled by MedMarket Diligence, LLC

Pending Reports from MedMarket Diligence:

  • Global Nanomedical Technologies, Markets and Opportunities, 2016-2021. Details.
  • Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022. Details.
  • Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022. Details.

Patrick Driscoll
(patrick)
MedMarket Diligence

Stents: From Peripheral Arterial to Peripheral Venous

Interventional technologies are expanding in all directions and vasculatures. Peripheral stenting as part of endovascular aortic repair or treatment of other symptomatic peripheral artery disease also include bare metal and drug-eluting stents for critical limb ischemia resulting from iliac, femoropopliteal and infrapopliteal occlusive disease; stent-grafting devices used in endovascular repair of abdominal and thoracic aortic aneurysms; as well as a subset of indication-specific and multipurpose peripheral stents used in recanalization of iliofemoral and iliocaval occlusions resulting in CVI.

Despite similarities in market dynamics (a notable difference here is the higher growth rate of venous stents)…

Screen Shot 2016-03-21 at 9.36.37 AM

Source: MedMarket Diligence, LLC; Report #V201.

…venous markets have not yet reach the same scale as arterial stents (now shown on the same scale):

Screen Shot 2016-03-21 at 9.35.13 AM

Source: MedMarket Diligence, LLC; Report #V201.

Venous and Arterial Stents in Peripheral Vascular Applications

In the February 2016 report #V201, “Global Market Opportunities in Peripheral Arterial and Venous Stents, Forecast to 2020”, we detail the markets for peripheral stents in the management of the most prevalent occlusive circulatory disorders and other pathologies affecting the abdominal and thoracic aortic tree and lower extremity arterial bed.

Stents are also increasingly used in the management of the debilitating conditions like venous outflow obstruction associated with deep venous thrombosis and chronic venous insufficiency.

Globally, peripheral stenting procedures for arterial indications, as in abdominal and thoracic aortic aneurysm, are growing around 6% annually, while venous procedures are a little higher. More noteworthy is the actual shifts of the market as the slowing, but still relentless, growth in China and elsewhere in Asia-Pacific region is actually changing the balance of markets, and in fact will become the dominant market for peripheral arterial stents by 2020

Periph stent px arterial

Note: Proprietary data obscured.
Source: MedMarket Diligence, LLC; Report #V201.

In the less well developed venous stenting arena, the U.S. and Europe still represent the largest share of the market, and will do so through 2020.

Screen Shot 2016-03-18 at 2.40.34 PM

Note: Proprietary data obscured.
Source: MedMarket Diligence, LLC; Report #V201.

Peripheral Arterial Disorders

Excerpt from, “Global Market Opportunities in Peripheral Arterial and Venous Stents, Forecast to 2020.” Report #V201.

Within the arterial system, a combination of arteriosclerosis and its progressing form known as atherosclerosis, or obstructive arteriopathy, represents the most common case of PVD. Arteriosclerosis is a normal consequence of aging involving gradual thickening of arterial walls and decline in the number of arterial muscle fibers. As a result, the arteries become rigid and incapable to quickly recoil following expansion or contraction. They also lose the ability to adjust their lumen and accommodate variations in the blood flow dictated by the changing oxygen needs of tissues supplied.

atherosclerosisAtherosclerosis is a pathological complication of arteriosclerosis and not a part of the normal aging experience. It involves a deposition and built-up of plaque composed of fatty substances, cholesterol, cellular waste products, calcium and fibrin (a clotting material in the blood) on the inner lining of arterial wall. In the process of plaque formation, changes also occur to the arterial intima. The trapping of lipids and other harmful matter elicits a low grade inflammatory reaction in the vessels. As these lipids accumulate, occlusion of the vessel lumen results. The artery gradually becomes calcified in the medial layer which, in turns, leads to its stiffening. These conditions interfere with the normal flow of blood through the vessel, and occasionally thrombus formation occurs, which is believed to be caused by the hemorrhage into the plaque and formation of a blood clot on its surface. Such thrombus can fragment and break off to form emboli that travel through the blood stream and often block smaller vessels.

The ultimate causes and triggering mechanisms of atherosclerosis are still to be understood, though, many researchers assume that its onset is directly related to arterial trauma and associated inflammatory processes in the arterial intima. It is also believed that blood platelets play important role in the initiation and progression of the atherosclerotic disease. Platelets are involved in the formation of prostaglandins that might do damage to arteries. They also contain a growth factor that promotes proliferation of smooth muscle cells normally present in the arterial wall. There is a general agreement among practicing clinicians that an elevated and growing platelet count represents one of the earliest and reliable signs of progressing atherosclerosis.

One popular theory asserts the connection between atherosclerosis and excess blood lipoproteins trapped within the artery wall. According to that theory, when sufficient accumulation of such lipoproteins occurs, they become oxidized. The latter presumably leads to formation of some modified lipoproteins that are rapidly taken up by smooth muscle cells. This, in turn, triggers the foam cell forming and deposits of connective tissue cells and other elements.

Still another theory under investigation is focused on possible viral or bacterial cause for atherosclerosis. The advent of this theory has been prompted by the recently found evidence of Chlamydia pneumonia infection in the diseased artery’s plaque.

Although the cited concepts of atherosclerosis seem to have some merit, they tend to suffer from one common deficiency – all of them consider the atherosclerotic disease as a localized phenomenon that is confined in time and space to some site or segment of arterial infrastructure. However, it appears more plausible that atherosclerosis constitutes a local vascular manifestation of a systemic disease, which is associated with some biomolecular and metabolic imbalances and aberrations resulting from the accumulated exposure to ecological, viral, hereditary as well as dietary and other lifestyle factors.

According to the American Heart Association, the common risk factors associated with the development of coronary (and peripheral) atherosclerosis include elevated levels of blood cholesterol (particularly, low density lipoproteins), cigarette smoking, diabetes, hypertension, obesity, physical inactivity, and family history of vascular disease.

XPbtk_hero
Abbott Vascular

Due to largely asymptomatic character of early peripheral atherosclerosis (intermittent claudication, which serves as a primary reason for consulting with a physician, typically occurs in advanced stage of the disease) the available epidemiological data on this vascular disorder are arbitrary and inconclusive. The American Heart Association in its official guidelines on the management of peripheral atherosclerosis states that it afflicts about 5% of all men and 2% of all women aged 50 or older – which adds up to roughly 4.0 million patient caseloads. At the same time, other AHA publications assert that peripheral arterial disorders accompany at least 50% cases of the coronary artery disease and are being discovered in about the same share of all post-mortal exams. On their part, the industry data on the U.S. prevalence of peripheral arterial disease are ranging from 3.5 million cases at the lower end to as high as 25-35 million. Finally, experts in the field generally agree that symptomatic peripheral atherosclerosis affects approximately 8 to 12 million Americans, with about 2.0 million cases of clinically significant cases warranting intervention being diagnosed annually. There are some signs that the incidence of atherosclerosis has been rising during the last decade, reflecting both the aging of the population and continuing expansion of the patient caseloads afflicted by the diabetes, hypertension, and obesity. Arterial vessels of the lower extremities constitute both the most common sites of chronic peripheral vascular occlusions caused by atherosclerosis, and the primary target for interventional treatment with the use of percutaneous transluminal angioplasty (PTA) and stenting techniques.

Aside from their primarily intended uses in recanalization of occluded vascular conduits, covered peripheral stenting devices, or endoluminal stent-grafts are also increasingly employed in less-invasive transcatheter repair (isolation) of rupture-prone aortic aneurysms warranting intervention.