Peripheral Vascular Stents

The market for stents used in peripheral vascular indications — inclusive of stent grafts, and arterial and venous stents — is growing at an aggregate 6.2% CAGR from 2016 to 2020, which belies much stronger growth in specific subsets, especially in emerging markets like Asia/Pacific.

The aggregate compound growth rates for peripheral stent markets in each global region is shown below, with growth rates weighted by individual segment sales:

U.S.:  9.5%
Western Europe: 5%
Asia/Pacific: 21.3%
Rest of World: 13.9%

Peripheral stent products include the following, each of which is growing in sales at varying rates above and below the aggregregate regional sales growth:

Peripheral Arterial Stenting

– Bare Metal Stent Devices

– Drug Eluting Stent Devices

Aortic Aneurysm Repair

– Abdominal AA Stent-Grafts

– Thoracic AA Stent-Grafts

Peripheral Venous Stents

 

Worldwide Peripheral Stent Market by Product Category, 2015 and 2020

Screen Shot 2016-08-08 at 12.49.53 PM

Source: MedMarket Diligence, LLC; Report #V201.

Where will medicine be in 2035?

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, in the U.S., whether Obamacare persists (most likely) or is replaced with a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective. 

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions. Cancer and genomics, in particular, has been a lucrative study (see The Cancer Genome Atlas). Immunotherapy developments are also expected to be part of many oncology solutions. Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it. 
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.

Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics.

  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.

Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines.

  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, long-term and/or less costly solutions.
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.

    As the human genome is the engineering plans for the human body, it is a potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions –> Case in point, the recent emergence of the gene-editing technology, CRISPR, has set the stage for practical applications to correct genetically-based conditions.
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma, including pharmacogenomics to predict drug response. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.

    By 2035, technologies such as these will measurably reduce inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of minimally invasive technologies (e.g., especially the NOTES technology platform). A wide range of other technologies (e.g., gamma knife, minimally invasive surgery/intervention, etc.) across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit while minimizing or eliminating collateral damage.

Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits.

  • Personalized medicine. Perfect matches between a condition and its treatment are the goal of personalized medicine, since patient-to-patient variation can reduce the efficacy of off-the-shelf treatment. The thinking behind gender-specific joint replacement has led to custom-printed 3D implants. The use of personalized medicine will also be manifested by testing to reveal potential emerging diseases or conditions, whose symptoms may be ameliorated or prevented by intervention before onset.
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.Other technologies being developed aggressively now will have an impact over the next twenty years, including medical/surgical robots (or even biobots), neurotechnologies to diagnose, monitor, and treat a wide range of conditions (e.g., spinal cord injury, Alzheimer’s, Parkinson’s etc.).

The breadth and depth of advances in medicine over the next 20 years will be extraordinary, since many doors have been recently opened as a result of advances in genetics, cell biology, materials science, systems biology and others — with the collective advances further stimulating both learning and new product development. 


See the 2016 report #290, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.”

Hemostats Development, Sales Growth By Region

Hemostats are normally used in surgical procedures only when conventional bleeding control methods are ineffective or impractical. The hemostat market offers opportunities as customers seek products that better meet their needs. Above and beyond having hemostats that are effective and reliable, additional improvements that they wish to see in hemostat products include: laparoscopy-friendly; work regardless of whether the patient is on anticoagulants or not; easy to prepare and store, with a long shelf life; antimicrobial; transparent so that the surgeon continues to have a clear field of view; and non-toxic, i.e. preferably not made from human or animal materials.

Hemostat sales are being driven by several factors. These include the growth in the volume of inpatient and of ambulatory same-day surgeries, as well as the growth in minimally-invasive surgical procedure volumes. Effective hemostats may also reduce the time spent in the operating suite, which directly saves both surgeons and hospitals time and money. If the products can also reduce the risk of adhesions, then the patient may be able to avoid a second surgery sometime down the road.

Selected Manufacturers of Hemostats

CompanyProduct
BaxterFloSeal Flowable Hemostat
BaxterHemopatch Sealing Hemostat
BaxterTachoSil¨
BaxterGelfoam Plus Hemostasis Kit
B BraunSanguStop Collagen Hemostat
Covalon Technologies LtdCovaStatª
Covidien (Medtronic)Veriset¨
CryoLifePerClot¨ Powdered Hemostatic Agent
Ethicon (JNJ)Evithrom¨
Ethicon (JNJ)Surgifoam¨ Family of Products,
Ethicon (JNJ)Surgicel¨ Family of Absorbable Hemostats,
Ethicon (JNJ)Surgiflo¨ Hemostatic Matrix
MallinckrodtRecothrom
PfizerThrombin-JMI

(Note: Status on these products provided in Report #S290.)

Source: MedMarket Diligence, LLC; Report #S290.

Most markets for hemostats (as well as for sealants and glues) are experiencing very strong competition, and the US market, although the largest, is also saturated for many medical devices and products. Price controls are high priority in the European Union in order to control healthcare budgets. Japan, despite recent legislation making entry slightly easier, remains a tough market to crack. The easier-entry markets tend to be outside of the EU and Japan.

hemostat-sales-region-s290

Source: MedMarket Diligence, LLC; Report #S290.

However, emerging markets are often characterized by fragile or unsteady economies, and healthcare markets that may not be ready to receive the more advanced sealant, glue and hemostat products. These hurdles must be overcome using shrewd market strategies and local offices in order to gain a foothold. Not all companies have the funds required to get into these markets directly, in which case a joint venture may be the best route.

USA and Asia/Pacific Size Versus Growth in Sealants, Glues, Hemostats

The market dynamics in Asia/Pacific stand apart from those in the U.S. In the case of surgical sealants, glues, and hemostats, what stands out is the Size versus Growth metric.

Much of the potential in China, in particular, remains untapped (low volume, high growth), while in the U.S., these markets are more well established and, therefore, more penetrated.

Below are the size/growth “bubbles” for, alternating, the U.S. and Asia/Pacific.

output_dYHN2K

Source: MedMarket Diligence, LLC; Report #S290.

Surgical and Interventional Procedures on the Rise

Globally, cardiovascular procedures are following the dynamics of emerging technologies, penetration of surgical by inventional/transcatheter procedures, and more competitive markets for medtech. Emerging markets, especially, China (which has its own dynamics), will contribute to faster growth OUS.

 

Screen Shot 2016-08-01 at 2.14.43 PM

Source: MedMarket Diligence, LLC; Report #C500, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”.

Sealant, Glues, Hemostat Sales to Surge in Asia-Pacific

Growth in Asia-Pacific sales of sealants, glues, and hemostats will outstrip growth in the larger U.S. market.

Screen Shot 2016-07-25 at 2.00.48 PM

Source: MedMarket Diligence, LLC; Report #S290.

To request a set of report excerpts, click here.

Recent Merger and Acquisition Activity in Sealants, Glues and Hemostats

Growth in sealants, glues, and hemostats markets has been strong enough for long enough to have attracted a lot of players. With growth slowing as the untapped potential is reducing more rapidly, consolidation has now appeared in the natural order of things.

Recent Merger and Acquisition Activity in Sealants, Glues and Hemostats

Original Company/ ProductAcquiring or Collaborating CompanyDate of Acquisition/Collaboration DealFinancial Details (where revealed)
Bristol-Myers Squibb/ Recothrom¨ Thrombin topical hemostatThe Medicines Company2012/2014$105 million collaboration fee
Cohera Medical/TissuGlu¨Collaboration with B. Braun Surgical S.A. to distribute in Germany, Spain and Portugal.Jan. 2015B. Braun Surgical S.A. will exclusively market and sell TissuGlu in the territories of Germany, Spain and Portugal through its existing Closure Technologies commercial teams.
Profibrix/ FibroCapsThe Medicines Company2013$90 million, with $140 million contingent upon milestones
Medafor/Arista¨ AH Absorbable Hemostatic ParticlesCR Bard (Bard Davol)2013$200 million upfront payment
Tenaxis Medical, with ArterX (among other products)The Medicines Company2014$58 million in upfront payments
The Medicines Company/ PreveLeakª (formerly known as ArterX), Raplixaª(formerly known as FibroCaps) fibrin sealant, Recothrom¨ Thrombin topical (Recombinant) sealantMallinckrodt plc2016The entire deal has a potential value of $410 million.
Xcede Technologies, Inc./Resorbable Hemostatic PatchCollaboration with Cook BiotechJan-16Signed three collaboration agreements with Cook Biotech, including a Development Agreement, a License Agreement and a Supply Agreement to complete development, seek regulatory clearance and produce XcedeÕs resorbable hemostatic patch.

Source: MedMarket Diligence, LLC; Report #S290.

To request a set of report excerpts, click here.

Medtech old school: Ablation technologies

Compared to the use of cellular based technologies, gene editing, nanotech, and even more promising technologies ahead, the technology of ablation — the use of simple energy at various wavelengths, at various temperatures, intensities, methods desigend to be effective, accurate, and precise —  is not as sexy, but these technologies really are medtech old school.

Indeed, ablation technologies may not be able to compete effectively against cell therapy, gene therapy, or other advanced medical technologies, especially where “cure” is a reality, but they really do stand at the forefront of surgery today (and in some sense as the likely peak of device technologies). They are not concepts or potential technologies, but are treating myriad diseases today, offering better outcomes and improving quality of lives and saving lives.

Growth rates in sales of devices, equipment, and supplies in most ablation types are at least respectable in an era of cost containment, while other ablation modalities are strong enough in tapping unmet patient demand that they are investment-attractive. Just as these technologies have emerged and developed alongside other MIS technologies, they will continue to track surgeries (or interventions, sorry cardio guys) and be there until surgery, interventional medicine, or whatever its moniker, is made obsolete.

See the Smithers Apex report, “The Future of Ablation Products to 2020,” described at link.

Screen Shot 2016-07-21 at 3.42.15 PM

Source: Smithers Apex

Medtech fundings for July 2016

Medtech fundings for July 2016 stand at $612 million, led by the $183 million IPO of Bioventus, followed by the $49 million Series C funding of VytronUS, the $32 million funding of Endotronix and the $30 million funding of Senseonics.

Below are the top fundings for the month thus far. Check back before month end to see updates.

Screen Shot 2016-07-29 at 8.38.14 AM

For a complete list of fundings in July 2016, see link.

Fibrin and Other Sealants — Impacts of Emerging Market Growth

Screen Shot 2016-07-17 at 6.19.22 PM

Source: MedMarket Diligence, LLC; Report #S290.

To request a set of report excerpts, click here.