Where is the medtech growth?

Medical technology is, for many of its markets, being forced to look for growth from more sources, including emerging markets. Manufacturers are able to gain better margins through innovation, but their success varies by clinical application.

Cardiology. A demanding patient base (it’s life or death). Be that as it may, there are few new or untapped markets, only the opportunity for new technologies to displace existing markets. Interventional technologies are progressively enabling treatment of larger patient populations, but much growth will still be from emerging markets.

Wound management. Even the most well-established markets will see growth from innovation. The wound market just needs less growth to be happy, since small percentage growth becomes very large by volume. And yet, some of the most significant growth in the long run will be for more advanced

Surgery. Every aspect of surgery seems to be subject to attempts to improve upon it. Robotics, endoscopy, transcatheter, single-port, incisionless, natural orifice. Interventional options are increasing the treatable patient population, and it seems likely that continued development (e.g., materials, including biodegradables, use of drug or other coatings, including cells) will yield more routine procedures for more and different types of conditions, many of which have been inadequately served, if it all.

Orthopedics. Aging populations demanding more agility and mobility will drive orthopedic procedures and device use. Innovation still represents some upside, but more from 3D printing than other new technologies being introduced to practice.

Tissue/Cell Therapy. This is a technology opportunity (and represents radical innovation for most clinical areas), but it is also a set of target clinical applications, since tissues/cells are being engineered to address tissue or cell trauma or disease. Growth is displacing existing markets with new technology, such as bioengineered skin, tendons, bladders, bone, cardiac tissue, etc. These are fundamentally radical technologies for the target applications.

Below is my conceptual opinion on the balance of growth by clinical area coming from routine innovation (tweaks, improvements), radical innovation (whole new “paradigms” like cell therapy in cardiology), and emerging market growth (e.g., China, S. America).

Screen Shot 2016-06-22 at 1.56.13 PM

Source: MedMarket Diligence, LLC, opinion!

Transcath and surgical cardio volumes trending

VasculatureInterventional devices, offering MIS advantages, have preempted surgical caseload, and have expanded the treatable patient population. Multiple competitive alternatives are effective for high volume procedures for treatment of coronary artery, peripheral artery and other cardiovascular pathologies.

Clinicians have changing demands, sometimes very much in alignment with what manufacturers see as needs (it is good to point out their need before they see it).

Older populations are good for medtech — let’s be honest. (Yes, the “aging demographic” argument has been made again, but it is particularly true for interventional procedures, which are used disproportionately in older populations in accordance with age-based incidence rates in cardiovascular disorders.)

Cardio device manufacturers both lead and follow the market. Technologies that lower invasiveness, reduce complications, reduce repeats, increase outcomes, lower costs, and provide other benefits drive new procedure volume. When new technologies are progressively introduced, they have variable impacts on procedure volume, either displacing caseload or tapping new. The timing and relative impact of new technology emerging can cause abrupt shifts in caseload, procedures — and revenue.

Here are the top procedures for surgical and interventional cardiology:

  • Coronary artery bypass grafting
  • Coronary angioplasty and stenting coronary/mechanical and laser atherectomy
  • Ventricular assist device placement
  • Total artificial heart implantation
  • Donor heart transplantation
  • Lower extremity arterial bypass surgery
  • Percutaneous transluminal angioplasty (PTA) and bare metal stenting
  • PTA and drug-eluting stenting
  • PTA with coated balloons
  • Mechanical and laser atherectomy
  • Catheter-directed thrombolysis and thrombectomy
  • Aortic aneurysm repair
  • Vena cava filter placement
  • Endovenous ablation
  • Mechanical venous thrombectomy
  • Venous angioplasty and stenting
  • Carotid endarterectomy
  • Carotid artery stenting
  • Cerebral thrombectomy
  • Cerebral aneurysm and AVM surgical clipping
  • Cerebral aneurysm and AVM coiling & flow diversion
  • Congenital heart defect repair
  • Heart valve repair and replacement surgery
  • Transcatheter valve repair and replacement
  • Pacemaker implantation
  • Implantable cardioverter defibrillator placement
  • Cardiac resynchronization therapy device placement
  • Standard SVT ablation
  • Surgical AFib ablation
  • Transcatheter AFib ablation

These procedures are the subject of a June 2016 report from MedMarket Diligence, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022” (report #C500).

Sealants, Glues, Hemostats to 2022

 

Below is our bubble chart giving the segment size (bubble size and horizontal axis position) and growth (vertical axis position) of the products detailed in our 2014 report #S192.

Source: MedMarket Diligence, LLC; Report #S192 (published Oct. 2014)

Given the interest by companies actively involved in sealants, glues, and hemostats, we are publishing Report #S290 (June 2016), “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.”

From Skitch

What is the ideal wound product?

The previously accepted wisdom was that a wound healed best when it was kept as dry as possible. In 1962, George Winter, a British-born physician, published his ground-breaking wound care research. His paper, (Nature 193:293. 1962), entitled, “Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig,” demonstrated that wounds kept moist healed faster than those exposed to the air or covered with a traditional dressing and kept dry. Dr. Winter’s work began the development of modern wound dressings which are used to promote moist wound healing.

Natural skin is considered the ideal wound dressing, and therefore wound dressings have been designed to try to reproduce the advantages of natural skin. Today, experts feel that a wound dressing should have several characteristics if it is to serve its purpose. A wound dressing should:

  • Provide the optimal moisture needs for the particular wound
  • Have the capacity to provide thermal insulation, gaseous exchange, and to help drainage and debris removal, which promotes tissue reconstruction
  • Be biocompatible without causing any allergic or immune response reaction
  • Protect the wound from secondary infections
  • Be easily removable without causing any trauma to the delicate healing tissues.

There are hundreds of dressings to choose from, but they all fall into one of a few categories. The healthcare provider will select a dressing by category, according to availability and familiarity of using that particular dressing.

Occlusive dressings are those which are air- and water-tight. An occlusive dressing is frequently made with some kind of waxy coating to ensure a totally water-tight bandage. It may also consist of a thin sheet of plastic affixed to the skin with tape. An occlusive dressing retains moisture, heat, body fluids and medication in the wound. There are several types of occlusive dressings, which are discussed below.

It should be remembered that proper wound care, especially of a chronic wound, is a complex process, as much art as science; a trained healthcare provider assesses the wound as it goes through various stages, and applies the appropriate wound dressings as the need arises. Unfortunately, the most appropriate dressing is not always used, due perhaps to confusion around which type of dressing to apply, or because certain dressings—especially advanced dressings—either may not be available in the facility, or may not be reimbursed by the country’s healthcare system, or may simply be too expensive. This remains true even in some of the developed countries.

The following table summarizes potential applications for various types of wound care products, with selected examples. This summary is meant as a guideline and an illustration of the fact that different dressing types may find use in various types of wounds. In addition, as a wound heals, it may need a different type of dressing. Here again the wound care professional’s judgment and training come into play.

Dressing categoryProduct examplesDescriptionPotential applications
FilmHydrofilm, Release, Tegaderm, BioclusiveComes as adhesive, thin transparent polyurethane film, and as a dressing with a low adherent pad attached to the film.Clean, dry wounds, minimal exudate; also used to cover and secure underlying absorptive dressing, and on hard-to-bandage locations, such as heel.
FoamPermaFoam, PolyMem, BiatainPolyurethane foam dressing available in sheets or in cavity filling shapes. Some foam dressing have a semipermeable, waterproof layer as the outer layer of the dressingFacilitates a moist wound environment for healing. Used to clean granulating wounds which have minimal exudate.
HydrogelHydrosorb Gel Sheet, Purilon, Aquasorb, DuoDerm, Intrasite Gel, Granugel,Colloids which consist of polymers that expand in water. Available in gels, sheets, hydrogel-impregnated dressings.Provides moist wound environment for cell migration, reduces pain, helps to rehydrate eschar. Used on dry, sloughy or necrotic wounds.
HydrocolloidCombiDERM, Hydrocoll, Comfeel, DuoDerm CGF Extra Thin, Granuflex, TegasorbÕ Nu-DermMade of hydroactive or hydrophilic particles attached to a hydrophobic polymer. The hydrophilic particles absorb moisture from the wound, convert it to a gel at the interface with the wound. Conforms to wound surface; waterproof and bacteria proof.Gel formation at wound interface provides moist wound environment. Dry necrotic wounds, or for wounds with minimal exudate. Also used for granulating wounds.
AlginateAlgiSite, Sorbalgon Curasorb, Kaltogel, Kaltostat, SeaSorb, TegagelA natural polysaccharide derived from seaweed; available in a range of sizes, as well as in ribbons and ropes.Because highly absorbent, used for wounds with copious exudate. Can be used in rope form for packing exudative wound cavities or sinus tracts.
AntimicrobialBiatain Ag, Atrauman Ag, MediHoneyBoth silver and honey are used as antimicrobial elements in dressings.Silver: Requires wound to be moderately exudative to activate the silver, in order to be effective
NPWDSNaP, V.A.C. Ulta, PICO, Renasys (not in USA), Prospera PRO series, Invia LibertyComputerized vacuum device applies continuous or intermittent negative or sub-atmospheric pressure to the wound surface. NPWT accelerates wound healing, reduces time to wound closure. Comes in both stationary and portable versions.May be used for traumatic acute wound, open amputations, open abdomen, etc. Seems to increase burn wound perfusion. Also used in management of DFUs. Contraindicated for arterial insufficiency ulcers. Not to be used if necrotic tissue is present in over 30% of the wound.
Bioengineered Skin and Skin SubstitutesAlloDerm, AlloMax, FlexHD, DermACELL, DermaMatrix, DermaPure, Graftjacket Regenerative Tissue Matrix, PriMatrix, SurgiMend PRS, Strattice Reconstructive Tissue Matrix, Permacol, EpiFix, OASIS Wound Matrix, Apligraf, Dermagraft, Integra Dermal Regeneration Template, TransCyteBio-engineered skin and soft tissue substitutes may be derived from human tissue (autologous or allogeneic), xenographic, synthetic materials, or a composite of these materials.Burns, trauma wounds, DFUs, VLUs, pressure ulcers, postsurgical breast reconstruction, bullous diseases

Source: MedMarket Diligence, LLC; Report #S251.

Medtech fundings for June 2016

Below are the top medtech fundings for June 2016 to date. Revisit this post, or go to link, to see additional fundings in June.

Screen Shot 2016-06-03 at 3.54.22 PM

For a historical listing of medtech fundings by month, see link.

Medtech midterm; Cardiovascular procedures; Wound shifts; Fundings

d5472bf8-1237-4ecc-a976-28a1b2fc7f3f.jpg

advanced medical technologies

A weekly(ish) newsletter to our blog subscribers.
From MedMarket Diligence, LLC
(Make note of this code: “Optinthirtyoff”)

From “Medtech is Dead. Long Live Medtech“, here is some of what we can expect in the next 5-10 years in medtech:

  • Type 1 diabetes gradually becomes less burdensome, with fewer complications, and improved quality of life for patients.
  • Type 2 diabetes continues to plague Western markets in particular, despite advances in diagnosis, treatment, and monitoring due to challenges in patient compliance.
  • Cancer five year survival rates will dramatically increase for many cancers. The number of hits on Google searches for “cure AND cancer” will reflect this.
  • Multifaceted approaches available for treatment of traumatic brain injury and spinal cord injury – encompassing exoskeletons to help retrain/rehabilitate and increase functional mobility, nerve grafting, cell/tissue therapy, and others.
  • Organ/device hybrids will proliferate and become viable alternatives to transplant, or bridge-to-transplant, for pulmonary assist, kidney, liver, heart, pancreas and other organ.
  • Stem cells have had dramatic success, and the science will have improved, but challenges remain, especially since the excitement around stem and other pluripotent cells has created a climate not far removed from the wild west – the potential of such open territory being up for grabs has drawn hordes of activity, not all in the best interests of patients or shareholders. But in this time frame, specific treatments will likely have become standards of care for some diseases, while the challenge and opportunity remain for many others.
From “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”.

Cardiovascular Surgical and Interventional Procedures

  • Coronary Artery Bypass Graft Surgery
  • Coronary Mechanical and Laser Atherectomy
  • Coronary Angioplasty and Stenting
  • Mechanical Thrombectomy
  • Ventricular Assist Device Placement
  • Total Artificial Heart
  • Donor Heart Transplantation
  • Lower Extremity Arterial Bypass Surgery
  • Percutaneous Transluminal Angioplasty (PTA) and Bare Metal Stenting
  • PTA and Drug-Eluting Stenting
  • PTA with Drug-Eluting Balloons
  • Mechanical and Laser Atherectomy
  • Catheter-Directed Thrombolysis and Thrombectomy
  • Surgical and Endovascular Thoracic Aortic Aneurysm Repair
  • Surgical and Endovascular Abdominal Aortic Aneurysm Repair
  • Vena Cava Filter Placement
  • Endovenous Ablation
  • Venous Revascularization
  • Carotid Endarterectomy
  • Carotid Artery Stenting
  • Cerebral Thrombectomy
  • Cerebral Aneurysm and Arteriovenous Malformation (AVM) repair
  • Congenital Heart Defect Repair
  • Heart Valve Repair and Replacement Surgery
  • Transcatheter Valve Repair and Replacement
  • Pacemaker Implantation
  • Implantable Cardioverter Defibrillator Placement
  • Cardiac Resynchronization Therapy Device Placement
  • Standard SVT Ablation
  • Surgical AFIb Ablation
  • Transcatheter AFib Ablation

See Report #C500, publishing June 2016.

From “Worldwide Wound Management, Forecast to 2024”, Report #S251, published December 2015

e40a6a3f-1b21-40de-98ba-3467c5698825.png
Source: Report #S251.

Selected Medtech Fundings, May 2016

7114c77d-d736-44de-89c4-cc3b76f8c6b8.png
Source: Compiled by MedMarket Diligence, LLC

During the month of June 2016, our opt-in blog readers are eligible for 30% off any MedMarket Diligence report (not valid with other offers). To take advantage of this, order any report from an online link at mediligence.com (or go to store) and, at checkout, enter the coupon code “Optinthirtyoff” to save 30%.

Pending Reports from MedMarket Diligence:

  • Global Nanomedical Technologies, Markets and Opportunities, 2016-2021. Details.
  • Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022. Details.
  • Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022. Details.

Patrick Driscoll
(patrick)
MedMarket Diligence

Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022

Publishing June 2016:
Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022

This is a global report from MedMarket Diligence detailing from 2015 to 2022 the volume of interventional and surgical cardiovascular procedures, including open heart, peripheral vascular, cerebrovascular and all associated endovascular interventions.

Table of Contents

Executive Summary

Section 1: Common Acute and Chronic Cardiovascular Conditions Targeted by Surgical and Transcatheter Interventions

1.1     Ischemic Heart Disease

1.1.1     Angina Pectoris
1.1.2     Acute Myocardial Infarction
1.1.3     Incidence, Prevalence, Established Treatment Modalities

1.2     Heart Failure

1.2.1     Incidence, Prevalence, Established Treatment Modalities

1.3     Peripheral Artery Disease

1.3.1     Critical Limb Ischemia
1.3.2     Incidence, Prevalence, Established Treatment Modalities
1.3.3     Aortic Aneurysm
1.3.4     Incidence, Prevalence, Established Treatment Modalities

1.4     Peripheral Venous Disorders

1.4.1     Deep Venous Thrombosis and Pulmonary Embolism
1.4.2     Chronic Venous Insufficiency and Varicose Veins
1.4.3     Incidence, Prevalence, Established Treatment Modalities

1.5     Cerebrovascular Disorders

1.5.1     Cerebrovascular Occlusions and Acute Ischemic Stroke
1.5.2     Cerebral Aneurysm & AVM and Hemorrhagic Stroke
1.5.3     Incidence, Prevalence, Established Treatment Modalities

1.6     Structural Heart Disorders

1.6.1     Congenital Heart Defects

1.6.1.1     Incidence, Prevalence, Established Treatment Modalities

1.6.2     Valvular Disorders

1.6.2.1     Incidence, Prevalence, Established Treatment Modalities

1.7     Cardiac Rhythm Disorders

1.7.1     Bradycardia
1.7.2     Tachycardia

1.7.2.1     Atrial Fibrillation

1.7.3     Incidence, Prevalence, Established Treatment Modalities

Section 2: Current and Projected Volumes of Therapeutic Interventional and Surgical Cardiovascular Procedures

2.1    Coronary Artery Revascularization

2.1.1    Coronary Artery Bypass Graft Surgery

2.1.1.1    Utilization Trends and Procedure Volumes

2.1.2    Percutaneous Coronary Interventions

2.1.2.1    Coronary Angioplasty and Stenting

2.1.2.1.1 Utilization Trends and Procedure Volumes

2.1.2.2    CoronaryMechanical and Laser Atherectomy

2.1.2.2.1 Utilization Trends and Procedure Volumes

2.1.2.3    Mechanical Thrombectomy

2.1.2.3.1 Utilization Trends and Procedure Volumes

2.2    Acute and Chronic Heart Failure Management

2.2.1    Ventricular Assist Device Placement

2.2.1.1    Utilization Trends and Procedure Volumes

2.2.2    Total Artificial Heart Implantation

2.2.2.1    Utilization Trends and Procedure Volumes

2.2.3    Donor Heart Transplantation

2.2.3.1    Utilization Trends and Procedure Volumes

2.3    Peripheral Artery Revascularization

2.3.1    Lower Extremity Arterial Bypass Surgery

2.3.1.1    Utilization Trends and Procedure Volumes

2.3.2     Percutaneous Transcatheter Interventions

2.3.2.1    Angioplasty and Stenting

2.3.2.1.1 PTA and Bare Metal Stenting
2.3.2.1.2 PTA and Drug-Eluting Stenting
2.3.2.1.3 PTA with Drug-Coated Balloons
2.3.2.1.4 Utilization Trends and Procedure Volumes

2.3.2.2    Mechanical and Laser Atherectomy

2.3.2.2.1 Utilization Trends and Procedure Volumes

2.3.2.3    Catheter-Directed Thrombolysis and Thrombectomy

2.3.2.3.1 Utilization Trends and Procedure Volumes

2.4    Aortic Aneurysm Repair

2.4.1    Surgical AAA and TAA Repair
2.4.2    Endovascular AAA and TAA Repaire
2.4.3    Utilization Trends and Procedure Volumes

2.5    DVT and CVI Management

2.5.1    Vena Cava Filter Placement

2.5.1.1    Utilization Trends and Procedure Volumes

2.5.2    Endovenous Ablation

2.5.2.1    Utilization Trends and Procedure Volumes

2.5.3    Venous Revascularization

2.5.3.1    Mechanical Thrombectomy
2.5.3.2    Venous Angioplasty and Stenting
2.5.3.2     Utilization Trends and Procedure Volumes

2.6    Acute Stroke Prophylaxis and Treatment

2.6.1    Carotid Artery Stenosis Management

2.6.1.1    Carotid Endarterectomy
2.6.1.2    Carotid Artery Stenting
2.6.1.3    Utilization Trends and Procedure Volumes

2.6.2    Cerebral Thrombectomy

2.6.2.1    Utilization Trends and Procedure Volumes

2.6.3    Cerebral Aneurysm and AVM Repair

2.6.3.1    Cerebral Aneurysm and AVM Surgical Clipping
2.6.3.2    Cerebral Aneurysm and AVM Coiling & Flow Diversion
2.6.3.3    Utilization Trends and Procedure Volumes

2.7    Treatment of Structural Heart Disorders

2.7.1     Congenital Heart Defect Repair

2.7.1.1    Utilization Trends and Procedure Volumes

2.7.2    Heart Valve Repair and Replacement

2.7.2.1    Heart Valve Repair and Replacement Surgery
2.7.2.2    Utilization Trends and Procedure Volumes
2.7.2.3    Transcatheter Valve Repair and Replacement
2.7.2.4    Utilization Trends and Procedure Volumes

2.8    Cardiac Rhythm Management

2.8.1    Implantable Pulse Generator-Based Therapy

2.8.1.1    Pacemaker Implantation
2.8.1.2    Implantable Cardioverter Defibrillator Placement
2.8.1.3    Cardiac Resynchronization Therapy Device Placement
2.8.1.4    Utilization Trends and Procedure Volumes

2.8.2    Arrhythmia Ablation Therapy

2.8.2.1    Standard SVT Ablation
2.8.2.2    Utilization Trends and Procedure Volumes
2.8.2.3    AFib Ablation

2.8.2.3.1 Surgical AFib Ablation
2.8.2.3.2 Transcatheter AFib Ablation
2.8.2.3.3 Utilization Trends and Procedure Volumes

Section 3: Country Healthcare Profiles

3.1    United States and Other Americas

3.1.1    United States
3.1.2    Brazil
3.1.3    Canada
3.1.4    Mexico

3.2    Largest West European States

3.2.1    France
3.2.2    Germany
3.2.3    Italy
3.2.4    Spain
3.2.5    United Kingdom

3.3    Major Asian States

3.3.1    China
3.3.2    India
3.3.3    Japan


Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022
June 2016
Price:  $3,950 (print or PDF; add $200 for both).  Site/Global License also available.
For immediate download, order online or fax your order form.  Site/Global License also available.

 Questions? >> reports@mediligence.com.

 

 

Sealants, hemostats, glues — future markets foreseen

From our past coverage of surgical sealants, glues, hemostats in our 2014 Report #S192.  (See the forthcoming June 2016 report, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022”, Report #S290.)

Fibrin and synthetic sealants offer a significant advantage over pure hemostats because they do not rely on the full complement of blood factors to produce hemostasis. Sealants provide all the components necessary to prevent bleeding and will often prevent bleeding from tissues where blood flow is under pressure and the damage is extensive.

CryoLife
Source: CryoLife

These products have the potential to replace sutures in some cases where speed and strength of securement are priorities for the surgical procedure.

Biologically active sealants typically contain various formulations of fibrin and/or thrombin, either of human or animal origin, which mimic or facilitate the final stages of the coagulation cascade. The most common consist of a liquid fibrin sealant product in which fibrinogen and thrombin are stored separately as a frozen liquid or lyophilized powder. Before use, both components need to be reconstituted or thawed and loaded into a two-compartment applicator device that allows mixing of the two components just prior to delivery to the wound. Because of the laborious preparation process, these products are not easy to use. However, manufacturers have been developing some new formulations designed to make the process more user friendly. Leaders in biologic surgical sealant space include Baxter International and Johnson & Johnson’s Ethicon Biosurgery division, but there are a number of smaller suppliers as well, in what has become an increasingly crowded field.

Compared to biologically active sealants containing fibrin and other human- or animal-derived products, synthetic sealants represent a much larger segment of the sealant market in terms of the number of competitors, variety of products, and next-generation products in development. Non-active synthetic sealants do not contain ingredients such as fibrin that actively mediate the blood clotting cascade, rather they act as mechanical hemostats, binding with or adhering to the tissues to help stop or prevent active bleeding during surgery.

Synthetic sealants represent an active category for R&D investment in large part because they offer several advantages over fibrin-based and other biologically active sealants. First and foremost, they are not derived from animal or human donor sources and thus eliminate the risks of disease transmission. Moreover, they are typically easier to use than biological products, often requiring no mixing or special storage, and many of these products have demonstrated improved sealing strength versus their biological counterparts. Synthetic products also have the potential to be more cost-effective than their biologically active counterparts. Leaders in the synthetic surgical sealants space include Baxter International Inc., CryoLife, CR Bard, and Ethicon/J&J; however, there are many up-and-coming competitors operating in this segment of the market with some interesting next-generation technologies that could gain significant traction in the years ahead. Moreover, unlike the fibrin sealants segment, where most products have more general indications for surgical hemostasis, a good number of competitors in the synthetic sealant field are focused on specific clinical applications for their products, such as cardiovascular surgery, plastic surgery, or ophthalmic surgery.

Sealants-Hemostats-Glues-companies-by-type
Source: Report #S192 (pub. 2014)

The non-active hemostats segment of the market includes a variety of scaffolds, patches, sponges, putties, powders, and matrices made of various nonactive materials that act mechanically to stop/absorb active bleeding, often in conjunction with manual compression, during surgical procedures as well as emergency use. Many of the companies active in the first two market segments discussed above also participate in this sector, including Ethicon/J&J, CR Bard, Baxter, and CryoLife, but there are also many other companies that compete in the hemostats market worldwide.


MedMarket Diligence is completing a global analysis of medical and surgical sealants, glues, and hemostats to reveal the patterns of sales, product adoption rates, and the realized/unrealized opportunities for extant stakeholders inclusive of manufacturers, buyers, and the investment arena. Publishing in June 2016, Report #S290, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022”.

 

Wound healing factors; Growth in peripheral stenting; Nanomed applications

From our weekly email to blog subscribers…

Extrinsic Factors Affecting Wound Healing

From Report #S251, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World.”

Extrinsic factors affecting wound healing include:

Mechanical stress
Debris
Temperature
Desiccation and maceration
Infection
Chemical stress
Medications
Other factors

Mechanical stress factors include pressure, shear, and friction. Pressure can result from immobility, such as experienced by a bed- or chair-bound patient, or local pressures generated by a cast or poorly fitting shoe on a diabetic foot. When pressure is applied to an area for sufficient time and duration, blood flow to the area is compromised and healing cannot take place. Shear forces may occlude blood vessels, and disrupt or damage granulation tissue. Friction wears away newly formed epithelium or granulation tissue and may return the wound to the inflammatory phase.

Debris, such as necrotic tissue or foreign material, must be removed from the wound site in order to allow the wound to progress from the inflammatory stage to the proliferative stage of healing. Necrotic debris includes eschar and slough. The removal of necrotic tissue is called debridement and may be accomplished by mechanical, chemical, autolytic, or surgical means. Foreign material may include sutures, dressing residues, fibers shed by dressings, and foreign material which were introduced during the wounding process, such as dirt or glass.

Temperature controls the rate of chemical and enzymatic processes occurring within the wound and the metabolism of cells and tissue engaged in the repair process. Frequent dressing changes or wound cleansing with room temperature solutions may reduce wound temperature, often requiring several hours for recovery to physiological levels. Thus, wound dressings that promote a “cooling” effect, while they may help to decrease pain, may not support wound repair.

Desiccation of the wound surface removes the physiological fluids that support wound healing activity. Dry wounds are more painful, itchy, and produce scab material in an attempt to reduce fluid loss. Cell proliferation, leukocyte activity, wound contraction, and revascularization are all reduced in a dry environment. Epithelialization is drastically slowed in the presence of scab tissue that forces epithelial cells to burrow rather than freely migrate over granulation tissue. Advanced wound dressings provide protection against desiccation.

Maceration resulting from prolonged exposure to moisture may occur from incontinence, sweat accumulation, or excess exudates. Maceration can lead to enlargement of the wound, increased susceptibility to mechanical forces, and infection. Advanced wound products are designed to remove sources of moisture, manage wound exudates, and protect skin at the edges of the wound from exposure to exudates, incontinence, or perspiration.

Infection at the wound site will ensure that the healing process remains in the inflammatory phase. Pathogenic microbes in the wound compete with macrophages and fibroblasts for limited resources and may cause further necrosis in the wound bed. Serious wound infection can lead to sepsis and death. While all ulcers are considered contaminated, the diagnosis of infection is made when the wound culture demonstrates bacterial counts in excess of 105 microorganisms per gram of tissue. The clinical signs of wound infection are erythema, heat, local swelling, and pain.

Chemical stress is often applied to the wound through the use of antiseptics and cleansing agents. Routine, prolonged use of iodine, peroxide, chlorhexidine, alcohol, and acetic acid has been shown to damage cells and tissue involved in wound repair. Their use is now primarily limited to those wounds and circumstances when infection risk is high. The use of such products is rapidly discontinued in favor of using less cytotoxic agents, such as saline and nonionic surfactants.

Medication may have significant effects on the phases of wound healing. Anti-inflammatory drugs such as steroids and non-steroidal anti-inflammatory drugs may reduce the inflammatory response necessary to prepare the wound bed for granulation. Chemotherapeutic agents affect the function of normal cells as well as their target tumor tissue; their effects include reduction in the inflammatory response, suppression of protein synthesis, and inhibition of cell reproduction. Immunosuppressive drugs reduce WBC counts, reducing inflammatory activities and increasing the risk of wound infection.

Other extrinsic factors that may affect wound healing include alcohol abuse, smoking, and radiation therapy. Alcohol abuse and smoking interfere with body’s defense system, and side effects from radiation treatments include specific disruptions to the immune system, including suppression of leukocyte production that increases the risk of infection in ulcers. Radiation for treatment of cancer causes secondary complications to the skin and underlying tissue. Early signs of radiation side effects include acute inflammation, exudation, and scabbing. Later signs, which may appear four to six months after radiation, include woody, fibrous, and edematous skin. Advanced radiated skin appearances can include avascular tissue and ulcerations in the circumscribed area of the original radiation. The radiated wound may not become evident until as long as 10-20 years after the end of therapy.

Source: “Wound Management to 2024”, Report #S251.


Screen Shot 2016-05-22 at 8.35.06 PM

Source: “Global Market Opportunities in Peripheral Arterial and Venous Stents, Forecast to 2020”, Report #V201.


Selected Therapeutic and Diagnostic Applications of Nanotechnology in Medicine

Below are selected applications for neuromedical technologies in development or on the market currently.

Drug Delivery
Chemotherapy drug delivery
Magnetic nanoparticles attached to cancer cells
Nanoparticles carrying drugs to arterial wall plaques
Therapeutic magnetic carriers (TMMC) [guided using magnetic resonance navigation, or MRN]

Drugs and Therapies
Diabetes
Combatting antimicrobial resistance
Alzheimer’s Disease
Infectious Disease
Arthritis

Tissue, cell and genetic engineering involving nanomedical tools
Nanomedical tools in gene therapy for inherited diseases
Artificial kidney
ACL replacements
Ophthalmology
Implanted nanodevices for alleviation of pain

Biomaterials 

Nanomedicine and Personalized Treatments

Source: Report #T650, “Global Nanomedical Technologies, Markets and Opportunities, 2016-2021”. Report #T650.

Medtech is Dead. Long Live Medtech.

The old Chinese saying, “May you live in interesting times”, is often used as a curse (and likely originated as such), since interesting is oft synonymous with challenging, uncertain, stressful or otherwise difficult. Insult or blessing, we are entering interesting times.

The coming era of development in medical technology may be the most interesting in history. Let’s get to it.

Consider the near term:

Cost pressures, demands for improved outcomes, and need for better access to healthcare have been rising to the fore as forces overhauling markets for medical technologies.

Chronic disease has always represented a major cost challenge, given the expense of ongoing care, but as cost and quality become more demanding, while prevalence of type 2 diabetes, obesity, and associated co-morbidities increase (and compounded by higher prevalence of type 2 in an increasingly older population), driven by persistent sedentary lifestyles, diet, and other health choices, it becomes clear that chronic disease will command much attention, representing real opportunities in medtech.

Never before have so many technologies, alone or in combination, been poised to change the nature of intervention:

  • bioabsorbable, bioactive, & biocompatible devices
  • drug-device hybrids
  • surgical innovations: sutureless surgery, natural orfice surgery, intraoperative imaging and intraoperative pathology assessment, energy-based technologies;
  • information-intensive device, drug, and biotech product development
  • information-intensive medical devices
  • genetically-influenced drug development

In the medium term (next 5-10 years):

  • Type 1 diabetes gradually becomes less burdensome, with fewer complications, and improved quality of life for patients.
  • Type 2 diabetes continues to plague Western markets in particular, despite advances in diagnosis, treatment, and monitoring due to challenges in patient compliance.
  • Cancer five year survival rates will dramatically increase for many cancers. The number of hits on Google searches for “cure AND cancer” will reflect this.
  • Multifaceted approaches available for treatment of traumatic brain injury and spinal cord injury – encompassing exoskeletons to help retrain/rehabilitate and increase functional mobility, nerve grafting, cell/tissue therapy, and others.
  • Organ/device hybrids will proliferate and become viable alternatives to transplant, or bridge-to-transplant, for pulmonary assist, kidney, liver, heart, pancreas and other organ.
  • The use of stem cells for therapeutics is a radically different type of medicine, and while stem cells can be powerfully therapeutic, their use has also shown the potential to cause new cancer, graft-versus-host disease, organ damage, infection, and other direct and indirect complications. Nonetheless, the excitement around stem and other pluripotent cells creates a climate not far removed from the wild west – the potential of such open territory being up for grabs has drawn hordes of activity, not all in the best interests of patients or shareholders. The stem cell industry and others will continue to press the FDA to approve more therapies, with the pressure easing up only after a scarcity of patient deaths, complications, or just lackluster results.

Beyond 10 years, many things might happen, but which one actually happens (or the degree of its success) will be dictated by timing.

Will the big success in diabetes as we approach 2030 be cell-based — as in autogeneic pancreatic cells induced from stem cells — or will the state of the art at that time still be the “pump/meter closed loop artificial pancreas” (expected to be the case well before 2030?

Will tissue engineering allow us to preempt death?

The potential for us to preempt an enormous amount of disease is already before us, yet we studiously avoid it. At what point do we take advantage of this?

Consider what will be the case beyond 2026.

Research gaps will have narrowed drastically. The gap between basic science and clinical application will be very small. Our medical diagnostics will be extremely richly detailed, near-instantaneous, and widely accessible (e.g., there will be variants or embodiments of IBM Watson and similar intelligent diagnostic systems), which will of course optimize the potential for therapeutics. But the impact on research will be dramatic, because we will be able to much more rapidly and efficiently learn from an obvious integration of routine clinical data and research data via meta-analysis-esque (for lack of a less clumsy term) capacity to derive data from disparate local and remote systems.

Our nearly complete knowledge of the full spectrum of pathogenic factors (from environmental to genetic) and their correlation with specific patient populations will have pierced the veil that has concealed the etiologies of a large number of diseases, opening the door wide to the development of therapies.

We will understand, predict, and manage the development of genetic disease.

All political denial to the side, some of the most significant threats to our health in the future will ensue from our relentless campaign to ravage the planet’s resources – air, water, food – driven by overpopulation and happily capitalized upon by what we are seeing is a growing horde of lethal, many well evolved but otherwise persistent pathogens (from tuberculosis, MRSA, Ebola, Marburg, and many others as yet unidentified), already made more threatening due to antibiotic resistance we have knowingly facilitated.

However, fear not, my 2.3% excise tax refugees. The future is bright for you, if you care to recognize your place in it.

But first, here’s a blunt reality: Medical devices, at least as we know them, will simply become irrelevant. Medical devices, no matter how sophisticated, are clunky mechanical tools for amelioration of symptoms for diseases about which know too little to solve with near-zero cost permanent cures (think of the vaccine, an unbelievable idea in the mind of those fearing polio) but only when drugs or other interventions are not also possible.

Let there be no doubt — medical technology will thrive. Disease is persistent. Conditions are worsening for the human population. But, more importantly, at least from the sense of an industry with a big financial stake in the situation, nature does not give up her secrets easily and there remain many obstacles to overcome (not least of which is wanton and persistent human ignorance) before we are able to utterly avoid or cheaply cure all diseases.