The Five Biggest Medical Technology Forces

There are five fundamental forces driving change in virtually every medical technology market. (There are many other forces, of course, that impact these markets, such as regulation, reimbursement, etc., but here I speak of forces driven by technology and the innovators employing them.) They represent challenges and opportunities — depending merely upon how companies perceive and respond to them.

Devices are no longer devices (only).

An inert medical or plastic device is likely to present little competitive threat. The device that succeeds stretches the boundaries of what a device is. Devices can be:

  • Biocompatible
  • Bioresorbable
  • Bioactive
  • Shape-shifting (e.g., nitinol)
  • Hybridized with drugs, cells, other biologics
  • Integrated with RFIDs and sensors
  • Combinations of the above

Competition comes from all directions. And so does opportunity.

Competition in medical technology has long since been defined by the device, having been replaced by the definition of the specific problem solved. And that problem is the disease state and the costs of managing and/or eliminating it. (An angioplasty catheter’s competition is not just angioplasty catheters, but also drug-eluting and/or bioresorbable coronary stents, drug-coated balloons, atherectomy, minimally invasive coronary artery bypass graft, atherosclerotic plaque-reducing drugs, etc.) Successful innovators consider all possible alternatives to solving the disease state need and define themselves by the solution, not the product. The only limitation a manufacturer has is its willingness to pursue all avenues to solving the problem.

Zero invasiveness.

Any technology that is not focused on the ideal of zero collateral damage, zero complications, and zero adverse side-effects will be threatened by those that do. The advances in materials technologies, medical/surgical techniques and understanding of pathology, among other advances, are sufficient to challenge manufacturers to pursue the goal of zero invasiveness. Just as open surgery has evolved to incisionless surgery, medical technologies increasingly take on the potential to be more like drugs, or better — treating the disease on a one-time basis with no complications whatsoever.

Decentralized, point-of-care technology.

Capital equipment is expensive, big and lethargic. A handheld imaging — ultrasound, even MRI — performed at the patient’s bedside or doctor’s office, offers enormous potential to reduce cost and increase clinical utility. But decentralization is not limited to diagnosis, since treatment is the ultimate goal and its incentives are the same. Of course, the trend moving diagnostics and therapeutics from the centralized to the point-of-care is not a new idea, but the reality is that a whole range of therapeutic devices (e.g., numerous ablation modalities) have been developed that no longer require OR suites, general anesthesia and their associated costs, and imaging systems have been shrinking to the point that words like “handheld” and “MRI” can be used in the same sentence (see Butterfly Network).

Research and development tools eliminate excuses.

R&D is inevitably challenged to evaluate ideas thoroughly, considering difficult to anticipate obstacles and rapidly evaluating ideas to reveal the best prospects and bring them to manufacturing, let alone market. But multiple technologies have been developed and put into use that can accelerate the iterative cycles of development and yield prime product candidates to bring to market — biotech, pharma, biopharm, device, drug/device and others.  Computer modeling of hemodynamic blood flow, computer simulation of drug candidates (hybridized with devices or not), 3D printing (prototypes, custom implants) and many other advances rapidly accelerate and improve the efficiency of product development of products that more perfectly fit the need and eliminate excuses for unforeseen costs and patient complications. R&D is also far more well informed — integrating more complete understanding of systems biology and the consequent downstream benefits and costs of intervening in any particular way. What is left is the ability to more rapidly evaluate and test (more) ideas and bring them to market.

 

Surgical Glues, Sealants, Hemostats and Wound Closure Worldwide Markets

Acute wounds have long represented a core focus of healthcare, one that manufacturers have been steadily changing through innovative new technologies. MedMarket Diligence’s global report on wound closure markets reveals the dynamics of this change, detailing the clinical practices, products, technologies, companies and the resulting current and forecast markets.

PRLogApril 7, 2015MISSION VIEJO, Calif.The products and technologies focused on the management of acute wounds, encompassing hemostasis, closure and sealing represent a significant, growing segment of the total medical device market. The global market for surgical sealants, glues, and wound closure devices reached over $10.8 billion in 2014 and is forecast to increase to about $14 billion in 2018, exhibiting an overall compound annual growth rate (2014-2018) of 7.0%, according to the latest global report on wound closure and related products, published by MedMarket Diligence.

“We have tracked this market as manufacturers introduced novel wound sealing and closure technologies intended to integrate with one of the highest volume areas of healthcare,” says Patrick Driscoll, President of MedMarket Diligence. According to Driscoll, the level of innovation has been remarkable — from the advent of fibrin glues, to the continued evolution of sutures and staples, to the emergence of products working alone or in tandem to achieve better outcomes in a cost sensitive climate.This market is comprised of sutures/staples, vascular closure devices, surgical tapes, surgical hemostats, and surgical sealants and glues. There are well over 100 companies active in the marketing and development of these products, with the associated technologies running the gamut from devices to biologics to synthetics.

Wound closure has become a clinical practice that is rapidly evolving from what was once simple suturing or taping wounds to more sophisticated procedures that ensure rapid cessation of blood loss, prompt closure, strong adhesion of wound edges, tight sealing, reduced scarring, reduced risk of infection and more rapid healing — all accomplished largely with existing surgeon skills and with reasonable costs for healthcare payers and margins for manufacturers.

Surgical sealants and glues are expected to demonstrate the highest growth rate over the forecast period, but the largest segment in terms of revenues is the sutures and staples market, which comprise about half of the worldwide total. Hemostats represent the next largest segment, followed by surgical sealants and glues, tapes, and vascular closure devices.

The market leaders in this area are Johnson & Johnson, Covidien, B. Braun, and 3M, but market shares have proven to be fluid as innovations from hundreds of competitors are gaining and expanding footholds in the big companies’ territories.

The MedMarket Diligence report, “Worldwide Surgical Sealants, Glues, and Wound Closure Markets, 2013-2018“, provides specific forecasts and shares of the worldwide market by segment for Americas (detail for U.S., Rest of North America and Latin America), Europe (detail for United Kingdom, German, France, Italy, Spain, Rest of Europe), Asia/Pacific (detail for Japan, Korea, Rest of Asia/Pacific) and Rest of World.

The report also provides background data on the surgical, disease and traumatic wound patient populations targeted by current technologies and those under development, and the current clinical practices in the management of these patients, including the dynamics among the various clinical specialties or subspecialties vying for patient population and facilitating or limiting the growth of technologies.

The report establishes the current worldwide market size for major technology segments as a baseline for and projecting growth in the market through 2018. The report also assesses and projects the composition of the market as technologies gain or lose relative market performance over this period.

The report profiles the top companies by revenue and a reasonable selection of the most promising or otherwise noteworthy companies in the markets covered in this report, providing data on their current products, current market position and products under development.

The report is described in detail at http://www.mediligence.com/rpt/rpt-s192.htm and may be ordered for immediate download from http://www.mediligence.com/store/page50.html.

Sticky stuff: remora, mussels, geckos, crab shells, Australian burrowing frogs, spider webs, porcupine quills, sandcastle worms

It may not be obvious what links all of these creatures, but it is their all-natural adhesiveness. While we have covered these before, today Researchers at Purdue University report on the development of new glues with industrial applications (including medical) based on glues derived from, or inspired by, mussels and oysters.

The reality is that there is a very wide range of naturally occurring “bio-glues” or other adhesives (or adhesive mechanisms) that are being evaluated for their potential use as medical/surgical glues and adhesives.

(This technique of “biomimicry”, in which products are developed that exploit or replicate features in nature, is not new. Velcro, for instance, was invented in 1941 by Swiss engineer George de Mestral, who recognized a potential product in burrs, the plant seed pods covered with hooked spines that readily attach to fur, fabrics and almost any surface that has filamentous covering.)

Below is a list of organism-derived “bio-glues”, a wide range of naturally-occurring adhesives that are being investigated for their potential development as commercial adhesives, including for medical/surgical adhesion.

Most of these have at least been preliminarily investigated as to why they have such high strength, why they adhere under certain challenging conditions and other considerations. Further research and development, in some cases to an advanced degree, has been done on a number of these to actually either directly utilize these glues, modify them or develop new ones inspired by them.

MedMarket Diligence tracks the medical/surgical markets for fibrin and other sealants, glues, hemostats, tapes, vascular closure devices, and staples/sutures/clips in Report #S192. Products specifically related to closure of wounds (excluding hemostasis*) will exceed $11 billion in sales by 2018:

Screen Shot 2015-04-03 at 8.08.01 AM

*Hemostasis is covered in report #S192.

Source: MedMarket Diligence, LLC; Report #S192.

Growth of Ablation Technologies, Applications, Worldwide

The growth in sales of a medical technology is dictated by a unique combination of a specific technology in a specific clinical application in a specific geographic market.

In the Smithers Apex report, The Future of Tissue Ablation Products to 2020, the markets for the different ablation technology types were assessed per application in each of the major world geographies. See the groupings, below:

Ablation Types and Clinical Applications:

  • Electrosurgical/radiofrequency
    • Cardiac
    • Surgical
  • Microwave
    • Oncologic
    • Urologic
  • Laser
    • Aesthetic
    • Ophthalmic
    • Surgical
  • External Beam Radiation Therapy (EBRT)
    • LINAC Systems
    • Cobalt-60
  • Cryoablation
    • Cardiac & Vascular
    • Oncologic Surgery
    • GYN Surgery
    • Dermal/Cutaneous Surgical
  • Ultrasound
    • Ophthalmic (Cataract) Surgical
    • Multipurpose Surgical
    • Urologic Surgical
    • Multipurpose High Intensity Focused Ultrasound (HIFU)

Geographic Areas:

  • United States & Other Americas
  • Largest Western & European States
  • Major Asian States
  • Rest of World

The Smithers Apex report contains the detailed assessment of ablation technology sales in each combination of technology, geography and clinical application. Below is illustrated graphically, sorted by compound annual growth rate in sales, each of the combinations.

Growth of Ablation Technologies by Clinical Application and Geography, 2014-2020

image001

Source: Smithers Apex

 

The Future of Coronary Heart Disease Medical Devices to 2021

The global interventional cardiology technologies market reached an estimated $12,179 million in 2014. By 2021 it is predicted that this market will have further increased in value to $22,472 million with a compounded annual growth rate of 9.1%. Despite the issues and challenges confronting healthcare providers and players globally, this market remains buoyant and continues to provide improved quality of life for patients suffering from coronary artery disease.

The Future of Coronary Heart Disease Medical Devices to 2021 examines the management of this disease and takes a close look at the technological developments that are driving this market, including detailed geographical analysis and key company profiles.

e.7

See details on this report from Smithers Apex at link.

Surgical Sealants, Glues, and Hemostats with Bioactive Agents

Excerpt from Report #S192, “Worldwide Surgical Sealants, Glues, and Wound Closure 2013-2018″.

Screen Shot 2015-03-30 at 10.14.59 AMBiologically active sealants typically contain various formulations of fibrin and/or thrombin, either of human or animal origin, which mimic or facilitate the final stages of the coagulation cascade. The most common consist of a liquid fibrin sealant product in which fibrinogen and thrombin are stored separately as a frozen liquid or lyophilized powder. Before use, both components need to be reconstituted or thawed and loaded into a two-compartment applicator device that allows mixing of the two components just prior to delivery to the wound. Because of the laborious preparation process, these products are not easy to use. However, manufacturers have been developing some new formulations designed to make the process more user friendly.

Selected Biologically Active Sealants, Glues, and Hemostats 

CompanyProduct NameDescription/
(Status*)
Asahi Kasei MedicalCryoSeal FS SystemFibrin sealant system comprising an automated device and sterile blood processing disposables that enable autologous fibrin sealant to be prepared from a patient's own blood plasma in about an hour.
BaxterArtissFibrin sealant spray
BaxterTisseelBiodegradable fibrin sealant made of human fibrinogen and human thrombin. For oozing and diffuse bleeding.
BaxterFloSealHemostatic bioresorbable sealant/glue containing human thrombin and bovine-derived, glutaraldehyde-crosslinked proprietary gelatin matrix. For moderate to severe bleeding.
BaxterGelFoam PlusHemostatic sponge comprising Pfizer's Gelfoam hemostatic sponge, made of porcine skin and gelatin, packaged with human plasma-derived thrombin powder.
Behring/NycomedTachoCombFleece-type collagen hemostat coated with fibrin glue components.
Bristol-Myers Squibb/ZymoGenetics (Sold by The Medicines Company in the US and Canada)RecothromFirst recombinant, plasma-free thrombin hemostat.
CSL BehringBeriplast P/Beriplast P Combi-SetFreeze dried fibrin sealant. Comprised of human fibrinogen-factor XIII and thrombin in aprotinin and calcium chloride solution.
CSL BehringHaemocomplettan P, RiaSTAPFreeze-dried human fibrinogen concentrate. Haemocomplettan (US) and RiaSTAP (Europe).
J&J/EthiconEvicelEvicel is a new formulation of the previously available fibrin sealant Quixil (EU)/Crosseal (US). Does not contain the antifibrinolytic agent tranexamic acid, which is potentially neurotoxic, nor does it contain synthetic or bovine aprotinin, which reduces potential for hypersensitivity reactions.
J&J/EthiconEvarrestAbsorbable fibrin sealant patch comprised of flexible matrix of oxidized, regenerated cellulose backing under a layer of polyglactin 910 non-woven fibers and coated on one side with human fibrinogen and thrombin.
J&J/EthiconBIOSEAL Fibrin SealantLow-cost porcine-derived surgical sealant manufactured in China by J&J company Bioseal Biotechnology and targeted to emerging markets.
J&J/EthiconEvithromHuman thrombin for topical use as hemostat. Made of pooled human blood.
Pfizer/King PharmaceuticalsThrombin JMIBovine-derived topical thrombin hemostat.
Stryker/OrthovitaVitagel SurgicalBovine collagen and thrombin hemostat.
Takeda/NycomedTachoSilAbsorbable surgical patch made of collagen sponge matrix combined with human fibrinogen and thrombin.
Teijin Pharma Ltd/Teijin Group (Tokyo, Japan)KTF-374Company is working with Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN) to develop a sheet-type surgical fibrin sealant. Product combines KAKETSUKEN's recombinant thrombin and fibrinogen technology with Teijin's high-performance fiber technology to create the world's first recombinant fibrin sealant on a bioabsorbable, flexible, nonwoven electrospun fiber sheet.
The Medicines Company (TMC)Raplixa (formerly Fibrocaps)Sprayable dry-powder formulation of fibrinogen and thrombin to aid in hemostasis during surgery to control mild or moderate bleeding.
The Medicines Company (TMC)In development: Fibropad patchFDA accepted company's BLA application for Fibrocaps in April 2014 and set an action date (PDUFA) in 2015. In November 2013, the European Medicines Agency agreed to review the firm's EU marketing authorization application. Status update in report #S192.
Vascular SolutionsD-Stat FlowableThick, but flowable, thrombin-based mixture to prevent bleeding in the subcutaneous pectoral pockets created during pacemaker and ICD implantations.

Note: Status of products detailed in Report #S192.

Source: MedMarket Diligence, LLC

Medical Technologies at Startups, March 2015

(Updated)
Below is a list of the technologies under development at startups identified in March 2015 and included in the Medtech Startups Database.

  • Implanted neuromodulation device for the control of blood pressure.
  • Less invasive, catheter-based treatment of congestive heart failure caused by ischemic cardiomyopathy.
  • Electrophysiology recording systems for the treatment of atrial fibrillation.
  • Transcatheter mitral valve repair.
  • Orthopedic surgical instruments.
  • Smartphone-enabled stethoscope.
  • Bioresorbable device for the non-surgical treatment of aneurysms in patients with Kawasaki Disease.
  • Cold-based dilatation catheter system for the treatment of various peripheral lesion types.
  • Intraoperative surgical image guidance system.
  • Surgical device for bone alignment.
  • Bone-fixation for orthopedics and tissue allografts for post-surgery wound care.
  • Single-use surgical retractors for use during minimally invasive surgery.
  • Developing a cell therapy for Type 1 diabetes.
  • Optical targeting and visualization of trajectories in surgical procedures.
  • Contract medical technology development.
  • Device for the treatment of obstructive sleep apnea.

For a historical listing of technologies at medtech startups, see link.