Naturally sticky: Biologically-based medical glues dominate

Medical glues are either biologically-based, cyanoacrylate, or other synthetic. The bulk of global sales of medical glues are biologically-based, (includes fibrin, thrombogen, and others), cyanoacrylate-based glues, and other synthetic glues.

Cyanoacrylate-based glues, include those from Ethicon, Adhezion Biomedical, B. Braun, Meyer-Haake, and others. Cyanoacrylates provide strong adhesion, but biologically-based glues have found more applications, both topically and internally. “Other” glues are of a variety of synthetic types; these glues have yet to gain more than 4% share globally.

Below is illustrated the growth of biologically-based glues by region, showing that most growth in this segment will be from Asia/Pacific markets, which are consistently demonstrating higher growth than in western markets.

Global Markets for Biologically-Based Medical Glues, 2015-2022, USD MillionsSource: MedMarket Diligence, LLC; Report #S290. (Order online)

 

What’s next in sealants, glue, hemostats…and why?

From July 2016 published Report #S290.

Here are six key trends we see in the global market for surgical sealants, glues, and hemostats:

  1. Aggressive development of products (including by universities, startups, established competitors), regulatory approvals, and new product introductions continues in the U.S., Europe, and Asia/Pacific (mostly Japan, Korea) to satisfy the growing volume of surgical procedures globally.
  2. Rapid adoption of sealants, glues, hemostats in China will drive much of the global market for these products, but other nations in the region are also big consumers, with more of the potential caseload already tapped than the rising economic China giant. Japan is a big developer and user of wound product consumer. Per capital demand is also higher in some countries like Japan.
  3. Flattening markets in the U.S. and Europe (where home-based manufacturers are looking more at emerging markets), with Europe in particular focused intently on lowering healthcare costs.
  4. The M&A, and deal-making that has taken place over the past few years (Bristol-Myers Squibb, The Medicines Company, Cohera Medical, Medafor, CR Bard, Tenaxis, Mallinckrodt, Xcede Technologies, etc.) will continue as market penetration turns to consolidation.
  5. Growing development on two fronts: (1) clinical specialty and/or application specific product formulation, and (2) all purpose products that provide faster sealing, hemostasis, or closure for general wound applications for internal and external use.
  6. Bioglues already hold the lead in global medical glue sales, and more are being developed, but there are also numerous biologically-inspired, though not -derived, glues in the starting blocks that will displace bioglue shares. Nanotech also has its tiny fingers in this pie, as well.

See Report #S290, “Worldwide Sealants, Glues, and Hemostats Markets, 2015-2022”.

The reasons behind the growth in surgical sealants, glues, hemostats

Surgical sealants, glues, and hemostats are now a routine part of closing and managing wounds, with their use determined by demand from patients, surgeons, and healthcare systems that has in turn been enabled by innovations from technology development.

From our global analysis of sealants, glues, and hemostats, here are the elements that determine the forecast for their sales:

  • Product adoption trends, driven by better formulations, especially for use in MIS and other applications
  • Growth in different formulations developed for different clinical applications
  • Geographic market growth patterns and trends
  • Patient preferences
  • Growth in minimally invasive surgical procedures
  • Growth in products designed to work in MIS procedures
  • Growth rates driven by growing clinical utility
  • Surgeon preferences and adoption rate
  • Geographic market shifts (slowing growth rates in the U.S. and burgeoning growth in A/P, especially China due to its effort to modernize its healthcare system)
  • Demographically driven population shifts — age-related demand
  • Growth in surgical procedure volumes in MIS and other applications
  • Growth in the # of procedures performed in ambulatory surgical centers and doctors offices

 

Companies in the Market

Companies focused on wound closure find plenty of competition. Below is a selected list of current companies active in this field. M&A and even new startups will mold this list over the next five years.

Adhesys Medical, Adhezion Biomedical LLC, Advanced Medical Solutions, Arch Therapeutics, B. Braun Melsungen AG, Baxter, Cellphire, Chemence Medical, Cohera Medical, Connexicon Medical Ltd., Covalon Technologies, Covidien (Medtronic), CR Bard, CryoLife, CSL Behring, Endomedix, Entegrion, Ethicon (JNJ), Gecko Biomedical, Grifols International, Hyperbranch Medical, Integra LifeSCiences, LifeBond, Mallinckrodt, Medline Industries, Meyer-Haake GmbH, Ocular Therapeutics, Pfizer, Sealantis, Suneris.

The cumulative result of all these forces, drivers, and trends is a market with significant growth in some geographic markets and specific products. One need only consider the hemostat market to recognize these trends.

Source: MedMarket Diligence, LLC; Report #S290; Order online.

Medtech fundings for May 2017

Medtech fundings for May 2017 came in at a total $579 million, led by the $76.5 million raised by Outset Medical, the $57.7 million funding by CVRx, the $49 million raised by Intrinsic Therapeutics, the $46 million by Magenta Therapeutics and the $45 million by Advanced Cardiac Therapeutics.

Below are the top funding for the month. The complete list of fundings are shown at link (refresh your browser for updates during the month).

Source: Compiled by MedMarket Diligence, LLC.

For a historical listing of medtech fundings by month since 2009, see link.

Medtech fundings for April 2017

Medtech fundings for April 2017 stand at $524 million, led by the $120 million credit facility secured by Endologix, followed by $40 million raised by Cardiovascular Systems, $36 million by ALung Technologies, $32 million by Frequency Therapeutics, and $30 million by ProTom International.

Below are the top listings of medtech fundings for the month to date. For a complete listing of fundings to date, see link.

Source: Compiled by MedMarket Diligence, LLC

For a complete list of medtech fundings recorded since 2009, see link.

The global dynamics of cardiovascular surgical and interventional procedures

This is an excerpt from Report #C500, “Cardiovascular Procedures to 2022.”

Cardiovascular Procedures in 2016

• Coronary artery bypass graft (CABG) surgery;
 • Coronary angioplasty and stenting;
 • Lower extremity arterial bypass surgery;
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting;
  • Peripheral drug-coated balloon angioplasty;
  • Peripheral atherectomy;
  • Surgical and endovascular aortic aneurysm repair;
  • Vena cava filter placement
  • Endovenous ablation;
  • Mechanical venous thrombectomy;
  • Venous angioplasty and stenting;
  • Carotid endarterectomy;
  • Carotid artery stenting;
  • Cerebral thrombectomy;
  • Cerebral aneurysm and AVM surgical clipping;
  • Cerebral aneurysm and AVM coiling & flow diversion;
  • Left Atrial Appendage closure;
  • Heart valve repair and replacement surgery;
  • Transcatheter valve repair and replacement;
  • Congenital heart defect repair;
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices;
  • Pacemaker implantation;
  • Implantable cardioverter defibrillator placement;
  • Cardiac resynchronization therapy device placement;
  • Standard SVT & VT ablation; and
  • Transcatheter AFib ablation

In 2016, the cumulative worldwide volume of the most prevalent cardiac surgeries and other  cardiovascular procedures (at right) is projected to approach 15.05 million surgical and transcatheter interventions. This will include:

  • in coronart artery disease, roughly 4.73 million coronary revascularization procedures via coronary artery bypass graft (CABG) and percutaneous coronary intervention (PCI) or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million  chronic venous insufficiency, deep vein thrombosis, and pulmonary embolism targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and  valve replacement or valve repair  (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

During the period 2016 to 2022, the total worldwide volume of covered cardiovascular procedures is forecast to expand on average by 3.7% per annum to over 18.73 million corresponding surgeries and transcatheter interventions in the year 2022. The largest absolute gains can be expected in peripheral arterial interventions (thanks to explosive expansion in utilization of drug-coated balloons in all market geographies), followed by coronary revascularization (supported by continued strong growth in Chinese and Indian PCI utilization) and endovascular venous interventions (driven by grossly underserved patient caseloads within the same Chinese and Indian market geography).

The latter (venous) indications are also expected to register the fastest (5.1%) relative procedural growth, followed by peripheral revascularization (with 4.0% average annual advances) and aortic aneurysm repair (projected to show a 3.6% average annual expansion).

http://mediligence.com/c500/

Geographically, Asian-Pacific (APAC) market geography accounts for slightly larger share of the global CVD procedure volume than the U.S. (29.5% vs 29,3% of the total), followed by the largest Western European states (with 23.9%) and ROW geographies (with 17.3%). Because of the faster growth in all covered categories of CVD procedures, the share of APAC can be expected to increase to 33.5% of the total by the year 2022, mostly at the expense of the U.S. and Western Europe.

However, in relative per capita terms, covered APAC territories (e.g., China and India) are continuing to lag far behind developed Western states in utilization rates of therapeutic CVD interventions with roughly 1.57 procedures per million of population performed in 2015 for APAC region versus about 13.4 and 12.3 CVD interventions done per million of population in the U.S. and largest Western European countries.


Report #C500: “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.” Request excerpts.

This report may be purchased for immediate download at link.

Market positions in sealants, glues, hemostats fluid in U.S., Europe, Asia/Pacific

Market shares for sales of sealants, glues, and hemostats vary considerably from region to region globally due to the significant variations in the local market demand, rate of adoption of specific manufacturers’ products, the regulatory climate, local economies, and other factors. Consequently, manufacturers with significant share of sales in the U.S. or Europe or Asia/Pacific may have considerably lower or higher shares in other regions.

In the U.S., Ethicon and Baxter have dominant positions in sales of surgical sealants. However, in Europe and Asia/Pacific, Baxter has substantially smaller position, particularly relative to competitors like Takeda Pharmaceuticals and The Medicines Company.

Source: Report #S290, MedMarket Diligence, LLC

In the market for hemostats, similarly, Ethicon and Baxter have dominant position in the U.S. market, but in Asia/Pacific and Europe, Baxter is subordinate to Takeda Pharmaceuticals, CryoLife, and others.

Source: Report #S290, MedMarket Diligence, LLC

In medical glues, CryoLife has risen to the fore with its BioGlue, such that it has a global leading position as well as specifically in the U.S., Europe, and Asia/Pacific.

Source: Report #S290, MedMarket Diligence, LLC

MedMarket Future: Developments in Growth Technologies

Proliferation of graphene applications

The nature of graphene’s structure and its resulting traits are responsible for a tremendous burst of research focused on applications.

  • Find cancer cells. Research at the University of Illinois at Chicago showed that interfacing brain cells on the surface of a graphene sheet allows the ability to differentiate a single hyperactive cancerous cell from a normal cell. This represents a noninvasive technique for the early detection of cancer.
  • Graphene sheets capture cells efficiently. In research similar to that U. Illinois, modification of the graphene sheet by mild heating enables annealing of specific targets/analytes on the sheet which then can be tested. This, too, offers noninvasive diagnostics.
  • Contact lens coated with graphene. While the value of the development is yet to be seen, researchers in Korea have learned that contact lenses coated with graphene are able to shield wearers’ eyes from electromagnetic radiation and dehydration.
  • Cheaply mass-producing graphene using soybeans. A real hurdle to graphene’s widespread use in a variety of applications is the cost to mass produce it, but Australia’s CSIRO has shown that an ambient air process to produce graphene from soybean oil, which is likely to accelerate graphenes’ development for commercial use.

Materials

Advanced materials development teams globally are spinning out new materials that have highly specialized features, with the ability to be manufactured under tight control.

  • 3D manufacturing leads to highly complex, bio-like materials. With applications across many industries using “any material that can be crushed into nanoparticles”, University of Washington research has demonstrated the ability to 3D engineer complex structures, including for use as biological scaffolds.
  • Hydrogels and woven fiber fabric. Hokkaido University researchers have produced woven polyampholyte (PA) gels reinforced with glass fiber. Materials made this way have the structural and dynamic features to make them amenable for use in artificial ligaments and tendons.
  • Sound-shaping metamaterial. Research teams at the Universities of Sussex and Bristol have developed acoustic metamaterials capable of creating shaped sound waves, a development that will have a potentially big impact on medical imaging.

Organ-on-a-chip

In vitro testing models that more accurately reflect biological systems for drug testing and development will facilitate clinical diagnostics and clinical research.

  • Stem cells derived neuronal networks grown on a chip. Scientists at the University of Bern have developed an in vitro stem cell-based bioassay grown on multi-electrode arrays capable of detecting the biological activity of Clostridium botulinum neurotoxins.
  • Used for mimicking heart’s biomechanical properties. At Vanderbilt University, scientists have developed an organ-on-a-chip configuration that mimics the heart’s biomechanical properties. This will enable drug testing to gauge impact on heart function.
  • Used for offering insights on premature aging, vascular disease. Brigham and Women’s Hospital has developed organ-on-a-chip model designed to study progeria (Hutchinson-Gilford progeria syndrome), which primarily affects vascular cells, making this an affective method for the first time to simultaneously study vascular diseases and aging.

Untapped potential for sealants, glues, hemostats in wound caseloads and procedures

Today’s surgeon has a broad range of products from which to choose for closing and sealing wounds. These include sutures, stapling devices, vascular clips, ligatures, and thermal devices, as well as a wide range of topical hemostats, surgical sealants and glues.

However, surgeons still primarily use sutures for wound closure and securement—sutures are cheap, familiar and work most of the time. Now, in addition to reaching for a stapling device, the surgeon must frequently decide at what point to augment or replace the commonly used items in favor of other products, which product is best for what procedure or condition, how much to use, and ease of use in order to achieve optimal patient outcomes. Because of budget pressures, the surgeon must also consider price when selecting a product. Of course in the USA, the product must also be FDA-approved, although the surgeon still has the choice of using a product off-label.

In the areas of sealants, hemostats and glues, there is room for both improvement and additional products.  There are a number of products already on the market, but the fact is that there is no one product that meets all needs in all situations and procedures. There are few products that stand out from the rest, apart, perhaps, from DermaBond® and BioGlue®. There are unmet needs, and companies having the necessary technology, or which may acquire and further develop the technology, can enter this market and launch novel items. These products have yet to significantly tap the potential for wound management and medical/surgical procedures.

Note: Log10 scale; Chronic wounds includes pressure, venous/arterial and diabetic ulcers.

Source: MedMarket Diligence, LLC; Report #S290.

Sealants, Fibrin and Others

Numerous variants of fibrin sealant exist, including autologous products. “Other” sealants refers to thrombin, collagen & gelatin-based sealants.

Fibrin sealants are used in the US in a wide array of applications; they are used the most in orthopedic surgeries, where the penetration rate is thought to be 25-30%. Fibrin sealants can, however, be ineffective under wet surgical conditions. The penetration rate in other surgeries is estimated to be about 10-15%.

Fibrin-based sealants were originally made with bovine components. These components were judged to increase the risk of developing bovine spongiform encephalopathy (BSE), so second-generation commercial fibrin sealants (CSF) avoided bovine-derived materials. The antifibrinolytic tranexamic acid (TXA) was used instead of bovine aprotinin. Later, the TXA was removed, again due to safety issues. Today, Ethicon’s (JNJ) Evicel is an example of this product, which Ethicon says is the only all human, aprotinin free, fibrin sealant indicated for general hemostasis. Market growth in the Sealants sector is driven by the need for improved biocompatibility and stronger sealing ability—in other words, meeting the still-unsatisfied needs of physician end-users.

High Strength Medical Glues

Similar to that of sealants, the current market penetration of glues in the US is about 25% of eligible surgeries. There are several strong points in favor of the use of medical glues: their use can significantly reduce healthcare costs, for example by reducing time in the surgical suite, reducing the risk of a bleed, which may mean a return trip to the OR, and general ease of use. Patients seem to prefer the glues over receiving sutures for external wound closure, as glues can provide a suture-free method of closing wounds. In addition, if glues are selected over sutures, the physician can avoid the need (and cost) of administering local anesthesia to the wound site.

Hemostats

Hemostats are normally used in surgical procedures only when conventional methics to stop bleeding are ineffective or impractical. The hemostat market offers opportunities as customers seek products that better meet their needs. Above and beyond having hemostatic agents that are effective and reliable, additional improvements that they wish to see in hemostat products include: laparoscopy-friendly; work regardless of whether the patient is on anticoagulants or not; easy to prepare and store, with a long shelf life; antimicrobial; transparent so that the surgeon continues to have a clear field of view; and non-toxic; i.e. preferably not made from human or animal materials.


Drawn from, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022:  Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World.” Report #S290.

Add tick cement to the list of natural adhesives pursued for medical applications

In past posts, we have reported on multiple naturally-occurring substances or methods for strong adhesion that are being investigated for their potential to be exploited for medical or surgical adhesion. These include adhesives from remora, mussels, geckos, crab shells, barnacles, Australian burrowing frogs, spider webs, porcupine quills, sandcastle worms, etc.

Researchers from MedUni Vienna and Vienna University of Technology are now investigating 300 different ticks for the “cement” used by the parasites to attach to hosts. The goal is to study the composition of the natural tick “dowel” used by the mouthparts of ticks and determine how it might serve as a template for new tissue adhesives.

The Vienna research also notes other natural adhesives are similarly being investigated for medical and surgical use:

Other potential “adhesive donors” are sea cucumbers, which shoot sticky threads out of their sac; species of salamander, which secrete extremely fast-drying adhesive out of skin glands, if attacked; or insect larvae, which produce tentacles or crabs, which can remain firmly “stuck,” even under water.

The incentive for studying natural adhesives is that they have been driven by evolution to provide strong adhesion without toxicity in various wet or dry conditions that are challenging for existing synthetic or existing natural glues (e.g., fibrin glues, cyanoacrylates, etc.). Surgical glues currently in use have some limitation arising from lesser strength, ease of use, toxicity, and other shortcomings. New glues will gain wider adoption, capturing procedure volume used with sutures, clips and other closure methods, particularly in internal use, if they are stronger and/or provide tighter seals (without needing to be combined with sutures on the same incision/wound) and do not cause the toxicity that some high strength medical glues do (e.g., synthetics like cyanoacrylates; “super glues”). The biologically-derived glues (or the surfaces structures of gecko feet) avoid the toxicities of synthetics and have often proven to have very high tensile strength. (The fast-curing cement used by barnacles has been shown to have a remarkable tensile strength of 5,000 pounds per square inch.)

Edit: See also, Biomimetic Glue, based on shellfish natural adhesive.


MedMarket Diligence tracks the technologies, clinical practices, companies, and markets associated with medical and surgical sealants and glues, with the most recent coverage in, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022,” (report #S290).