Biologically-based medical glues to start sticking in A/P

The bulk of medical/surgical glues are biologically-based, and soon the bulk of medical glue sales will come from Asia/Pacific.

The two graphs below show the changes in regional shares in biologically-based glues. It can be seen that from 2015 to 2022, the US and Asia-Pacific will practically switch places in terms of revenue share per region. This significant change will come about because of the intensive and enormous healthcare modernization taking place in the PRC. In 2012, the Chinese government announced its 12th five-year plan which includes the construction of 20,000 new hospital and healthcare facilities.

Source: Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022:  Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World (Report #S290).

Hemostat sales growth and opportunity

Hemostats are normally used in surgical procedures only when conventional bleeding control methods are ineffective or impractical. The hemostat market offers opportunities as customers seek products that better meet their needs. Above and beyond having hemostats that are effective and reliable, additional improvements that clinicians wish to see in hemostat products include:

  • laparoscopy-friendly
  • work regardless of whether the patient is on anticoagulants or not
  • easy to prepare and store, with a long shelf life
  • antimicrobial
  • transparent so that the surgeon continues to have a clear field of view
  • non-toxic
  • preferably not made from human or animal materials.

 

Source: “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022”; MedMarket Diligence, LLC (Report #S290).

Interventional and Surgical Cardiovascular Procedure Volumes

Cardiovascular diseases (CVDs) are a variety of acute and chronic medical conditions associated with an inability of the cardiovascular system to sustain an adequate blood flow and supply of oxygen and nutrients to organs and tissues of the body. The CVD conditions may be manifested by the obstruction or deformation of arterial and venous pathways, distortion in the electrical conducting and pacing activity of the heart, and impaired pumping function of the heart muscle, or some combination of circulatory, cardiac rhythm, and myocardial disorders.

These diseases are treated via the following surgical and interventional procedures:

  • Coronary artery bypass graft (CABG) surgery;
  • Coronary angioplasty and stenting;
  • Lower extremity arterial bypass surgery;
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting;
  • Peripheral drug-coated balloon angioplasty;
  • Peripheral atherectomy;
  • Surgical and endovascular aortic aneurysm repair;
  • Vena cava filter placement
  • Endovenous ablation;
  • Mechanical venous thrombectomy;
  • Venous angioplasty and stenting;
  • Carotid endarterectomy;
  • Carotid artery stenting;
  • Cerebral thrombectomy;
  • Cerebral aneurysm and AVM surgical clipping;
  • Cerebral aneurysm and AVM coiling & flow diversion;
  • Left Atrial Appendage closure;
  • Heart valve repair and replacement surgery;
  • Transcatheter valve repair and replacement;
  • Congenital heart defect repair;
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices;
  • Pacemaker implantation;
  • Implantable cardioverter defibrillator placement;
  • Cardiac resynchronization therapy device placement;
  • Standard SVT & VT ablation; and
  • Transcatheter AFib ablation

In 2016, the cumulative worldwide volume of these procedures is projected to approach 15.05 million surgical and transcatheter interventions. This will include:

  • roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

Below is illustrated the overall global growth for each of the major categories of procedures through 2022.

Source: MedMarket Diligence, LLC; Report #C500.  (Full report available online.)

There is considerable variation in the growth of cardiovascular procedures globally, but most growth is coming out of Asia/Pacific. For example, within the area of venous interventions, the growth in the use of endovenous ablation for chronic venous insufficiency is markedly higher in Asia/Pacific than in other regions, though the U.S. will remain the largest volume of these procedures.

Source: MedMarket Diligence, LLC; Report #C500.  (Full report available online.)


“Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022” (Report #C500), published August 2016. See description, table of contents, list of exhibits at link. Available for purchase and download from link.

Market fragmentation and growth, decline in wound management

The market for wound management products — as varied as negative pressure wound therapy, skin grafts, hydrogel dressings, and growth factors — is a sort of free-for-all of offerings designed to accelerate healing, reduce treatment costs, yield better outcomes, or all of these and more. With so many sectors, and with well-established ones tending toward commodity, there can be many competitors, with few having significant market shares. Yet in several areas, quite remarkable growth is still available.  Excluding traditional bandage and dressings, three companies — S&N, Acelity and Mölnlycke — control over half the worldwide market.

Global Advanced Wound Market Market Shares

Source: MedMarket Diligence, LLC; Report #S251. Order online.

Growth is coming in the advanced areas of bioengineered skin, the ever-needed antimicrobials, and the great demand for foam dressings.


Source: MedMarket Diligence, LLC; Report #S251. Order online.

 

Viewed another way, with size and growth mapped relative to each other…

 

Source: MedMarket Diligence, LLC; Report #S251. Order online.

The U.S. remains the biggest consumer of wound management products, and this is not expected to materially change. Europe is seeing relative decline, however, as Asia Pacific demand ramps up:

Source: MedMarket Diligence, LLC; Report #S251. Order online.


The MedMarket Diligence report #S251, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World,” is detailed at link and is available for purchase and download online

Wound Hemostasis, Closure, and Sealing in the U.S. versus Asia/Pacific, 2015-2022

Sales of sealants, glues, and hemostats projected to 2022 for the U.S. and Asia/Pacific. While these products have had tremendous success in Japan, their sales in the rest of Asia/Pacific have not yet caught up to Japan, let alone to the U.S.

But that is expected to change as the most significant growth in these markets will indeed be coming from China, Korea, Australia, India, and elsewhere in these emerging markets.

Sales of Sealants, Glues, and Hemostats in the
U.S. and Asia/Pacific Markets, 2015-2022

Note: For direct comparative purposes, sales in these markets are shown on the same vertical scale.

Source: MedMarket Diligence, LLC; Report #S290. Available for purchase/download online.

Peripheral Stenting Worldwide: Arterial, Venous, BMS, DES, AAA, TAA

First introduced about two decades ago as a bailout technique for suboptimal or failed iliac angioplasty, peripheral vascular stenting gradually emerged as a valuable and versatile tool for a variety of primary and adjuvant applications outside the domain of coronary and cerebral vasculature.  Today, peripheral vascular stenting techniques are commonly employed in the management of the most prevalent occlusive circulatory disorders and other pathologies affecting the abdominal and thoracic aortic tree and lower extremity arterial bed. Stents are also increasingly used in the management of the debilitating conditions like venous outflow obstruction associated with deep venous thrombosis and chronic venous insufficiency.

Notwithstanding a relative maturity of the core technology platforms and somewhat problematic opportunities for conversion to value-adding peripheral drug-eluting systems, peripheral vascular stenting appears to have a significant room for qualitative and quantitative growth both in established and emerging peripheral indications.

A panoply of stenting systems are available for the management of occlusive disorders and other pathologies affecting peripheral arterial and venous vasculature. Systems include lower extremity bare metal and drug-eluting stents for treatment of symptomatic PAD and critical limb ischemia resulting from iliac, femoropopliteal and infrapopliteal occlusive disease; stent-grafting devices used in endovascular repair of abdominal and thoracic aortic aneurysms; as well as a subset of indication-specific and multipurpose peripheral stents used in recanalization of iliofemoral and iliocaval occlusions resulting in CVI.

In 2015, these peripheral stenting systems were employed in approximately 1.565 million revascularization procedures worldwide, of which the lower extremity arterial stenting accounted for almost 1.252 million interventions (or 80.9%), followed by AAA and TAA endovascular repairs with 162.4 thousand interventions (or 10.5%) and peripheral venous stenting used in an estimated 132.6 thousand patients (or 8.6% of the total).

The U.S. clinical practices performed almost 528 thousand covered peripheral arterial and venous procedures (or 34.1% of the worldwide total), followed by the largest Western European states with over 511 thousand interventions (or 33.1%), major Asian-Pacific states with close to 377 thousand interventions (or 24.4%), and the rest-of-the-world with about 131 thousand peripheral stent-based interventions (or 8.4%).

Below is illustrated the global market for peripheral stenting by region in 2016 and by segment from 2014 to 2020.

Source: MedMarket Diligence, LLC; Report #V201. Available online.

 

Source: MedMarket Diligence, LLC; Report #V201. Available online.

Medical and Surgical Sealants, Glues, and Hemostats, to 2022

There are several different classes of surgical sealants, glues and hemostatic products used to prevent or stop bleeding, or to close a wound or reinforce a suture line. These include fibrin sealants, surgical sealants, mechanical hemostats, active hemostats, flowable hemostats, and glues. Both sealants and medical glues are increasingly used either as an adjunct to sutures or to replace sutures.

Medical Sealants

Fibrin sealants are made of a combination of thrombin and fibrinogen. These sealants may be sprayed on the bleeding surface, or applied using a patch. Surgical sealants might be made of glutaraldehyde and bovine serum albumin, polyethylene glycol polymers, and cyanoacrylates.

Sealants are most often used to stop bleeding over a large area. If the surgeon wishes to fasten down a flap without using sutures, or in addition to using sutures, then the product used is usually a medical glue.

Source: MedMarket Diligence, LLC; Report #S290.

Hemostatic Products

The surgeon and the perioperative nurse have a variety of hemostats from which to choose, as they are not all alike in their applications and efficacy. Selection of the most appropriate hemostat requires training and experience, and can affect the clinical outcome, as well as decrease treatment costs. Some of the factors that enter into the decision-making process include the size of the wound, the amount of hemorrhaging, potential adverse effects, whether the procedure is MIS or open surgery, and others.

Active hemostats contain thrombin products which may be derived from several sources, such as bovine pooled plasma purification, human pooled plasma purification, or through human recombinant manufacturing processes. Flowable-type hemostats are made of a granular bovine or porcine gelatin that is combined with saline or reconstituted thrombin, forming a flowable putty that may be applied to the bleeding area.
Mechanical hemostats, such as absorbable gelatin sponge, collagen, cellulose, or polysaccharide-based hemostats applied as sponges, fleeces, bandages, or microspheres, are not included in this analysis.

Source: MedMarket Diligence, LLC; Report #S290.

Medical Glues

Sealants and glues are terms which are often used interchangeably, which can be confusing. In this report, a medical glue is defined as a product used to bond two surfaces together securely. Surgeons are increasingly reaching for medical glues to either help secure a suture line, or to replace sutures entirely in the repair of soft tissues. Medical glues are also utilized in repairing bone fractures, especially for highly comminuted fractures that often involve many small fragments. This helps to spread out the force-bearing surface, rather than focusing weight-bearing on spots where a pin has been inserted.

Thus, the surgeon has a fairly wide array of products from which to choose. The choice of which surgical hemostat or sealant to use depends on several factors, including the procedure being conducted, the type of bleeding, severity of the hemorrhage, the surgeon’s experience with the products, the surgeon’s preference, the price of the product and availability at the time of surgery. For example, a product which has a long shelf life and does not require refrigeration or other special storage, and which requires no special preparation, usually holds advantages over a product which must be mixed before use, or held in a refrigerator during storage, then allowed to warm up to room temperature before use.

Source: MedMarket Diligence, LLC; Report #S290.


From “Worldwide Market for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.” See details at link. Order online.

Hemostat Sales to 2022

Owing to their ease of use, ease of handling, and general clinical utility, hemostat sales will almost double worldwide between 2016 and 2022:

Source: MedMarket Diligence, LLC; Report #S290. Order online.

Hemostat sales are exceptionally strong in the well developed economies (Japan, Australia, Korea) of Asia, and will continue to expand there with the rapidly growing contribution of China’s hemostat sales.

Source: MedMarket Diligence, LLC; Report #S290. Order online.

[icegram campaigns=”9993″]

 

Regional Markets for Surgical Sealants, 2015 and 2022

The fastest growth in the sales of surgical sealants over the next decade will be in the Asia-Pacific region, driven primarily by very strong healthcare market growth in China, and reaching a CAGR (2016-2022) of at least 13.97%. The growth rate in China would be even higher, but will be dampened for the time being by the lack of surgeons trained in the proper use of these products, as well as the limitations of reaching a dispersed patient population. Nonetheless, the A/P share of the global sealants market will double in the next seven years!

Below illustrates the geographic distribution of surgical sealants (fibrin and others) in 2015.

Regional Markets for Sealants, Fibrin and Other Sealant Products,
2015 & 2022, USD Millions

2015screen-shot-2016-11-11-at-8-52-44-am

2022

screen-shot-2016-11-11-at-8-53-17-am

Source: MedMarket Diligence, LLC; Report #S290.


Report #S290 may be purchased online for PDF download or print delivery; in single, site, or global licenses.

Cardiovascular Surgical and Interventional Procedures Worldwide, 2015-2022

In 2016, the cumulative worldwide volume of the the following CVD procedures is projected to approach 15.05 million surgical and transcatheter interventions:

  • roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

screen-shot-2016-11-07-at-7-26-38-am

CABG: Coronary artery bypass graft; PCI: Percutaneous coronary intervention; AAA: Abdominal aortic aneurysm; TAA: Thoracic abdominal aneurysm; CVI: Chronic venous insufficiency; DVT: Deep vein thrombosis; PE: Pulmonary embolectomy.

Source: MedMarket Diligence, LLC; Report #C500, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.” (To request report excerpts, click here.)