Medtech fundings for June 2017

Fundings in medical technology for June 2017 stand at $503 million to date, led by the $140 million debt funding of Spectranetics, followed by the $57 million funding of Bonesupport, the $52 million debt funding of Accuray and the $42 million funding of Micell Technologies.

Below are the top medtech fundings thus far for June 2017:

Source: Compiled by MedMarket Diligence, LLC

For the complete list of medtech fundings for June 2017, see link.

For a historical listing of medtech fundings by month since 2008, see link.

The reasons behind the growth in surgical sealants, glues, hemostats

Surgical sealants, glues, and hemostats are now a routine part of closing and managing wounds, with their use determined by demand from patients, surgeons, and healthcare systems that has in turn been enabled by innovations from technology development.

From our global analysis of sealants, glues, and hemostats, here are the elements that determine the forecast for their sales:

  • Product adoption trends, driven by better formulations, especially for use in MIS and other applications
  • Growth in different formulations developed for different clinical applications
  • Geographic market growth patterns and trends
  • Patient preferences
  • Growth in minimally invasive surgical procedures
  • Growth in products designed to work in MIS procedures
  • Growth rates driven by growing clinical utility
  • Surgeon preferences and adoption rate
  • Geographic market shifts (slowing growth rates in the U.S. and burgeoning growth in A/P, especially China due to its effort to modernize its healthcare system)
  • Demographically driven population shifts — age-related demand
  • Growth in surgical procedure volumes in MIS and other applications
  • Growth in the # of procedures performed in ambulatory surgical centers and doctors offices

 

Companies in the Market

Companies focused on wound closure find plenty of competition. Below is a selected list of current companies active in this field. M&A and even new startups will mold this list over the next five years.

Adhesys Medical, Adhezion Biomedical LLC, Advanced Medical Solutions, Arch Therapeutics, B. Braun Melsungen AG, Baxter, Cellphire, Chemence Medical, Cohera Medical, Connexicon Medical Ltd., Covalon Technologies, Covidien (Medtronic), CR Bard, CryoLife, CSL Behring, Endomedix, Entegrion, Ethicon (JNJ), Gecko Biomedical, Grifols International, Hyperbranch Medical, Integra LifeSCiences, LifeBond, Mallinckrodt, Medline Industries, Meyer-Haake GmbH, Ocular Therapeutics, Pfizer, Sealantis, Suneris.

The cumulative result of all these forces, drivers, and trends is a market with significant growth in some geographic markets and specific products. One need only consider the hemostat market to recognize these trends.

Source: MedMarket Diligence, LLC; Report #S290; Order online.

Medtech fundings for May 2017

Medtech fundings for May 2017 came in at a total $579 million, led by the $76.5 million raised by Outset Medical, the $57.7 million funding by CVRx, the $49 million raised by Intrinsic Therapeutics, the $46 million by Magenta Therapeutics and the $45 million by Advanced Cardiac Therapeutics.

Below are the top funding for the month. The complete list of fundings are shown at link (refresh your browser for updates during the month).

Source: Compiled by MedMarket Diligence, LLC.

For a historical listing of medtech fundings by month since 2009, see link.

The rise and fall of medical technologies

When does one recognize that horse-and-buggy whips are in decline and auto-mobiles are on the rise?

When does one recognize that a new technology is a definite advance over established ones in the treatment of particular disease, in cost or quality?

Technologies go through life cycles.

A medical technology is introduced that is found effective in the management of a disease. Over time, the technology is improved upon marginally, but eventually a new technology, often radically different, emerges that is more effective or better (cheaper, less invasive, easier to use). It enters the market, takes market share from and grows, only to be later eclipsed by a new (apologies) “paradigm”. Each new technology, marginal or otherwise, advances the limit of what is possible in care.

Predicting the marginal and the more radical innovation is necessary to illustrate where medicine is headed, and its impact. Many stakeholders have interest in this — insurance companies (reimbursing technologies or covering the liabilities), venture capitalists, healthcare providers, patients, and the medical technology companies themselves.

S-curves illustrate the rise in performance or demand over time for new technologies and show the timing and relative impact of newer technologies when they emerge. Importantly, the relative timing and impact of emerging technologies can be qualitatively and quantitatively predicted. Historic data is extremely useful predicting the rise and fall of specific medical technologies in specific disease treatment.

Following are two examples of diseases with multiple technologies arcing through patient demand over time.

  • Ischemic Heart Disease Past, Current, and Future Technologies
    • Open bypass
    • Percutaneous transluminal coronary angioplasty
    • Minimally invasive direct coronary artery bypass (MIDCAB)
    • Percutaneous CABG
    • Stem-cell impregnated heart patches

The treatment of ischemic heart disease, given the seriousness of the disease and its prevalence, has a long history in medicine and within the past fifty years has a remarkable timeline of innovations. Ischemia is condition in which inadequate blood flow to an area due to constriction of blood vessels from inflammation or atherosclerosis can cause cell death. In the case of cardiac ischemia, in which the coronary arteries that supply the heart itself with blood are occluded, the overall cell death can result in myocardial infarction and death.

The effort to re-establish adequate blood flow to heart muscle has evolved from highly invasive surgery in which coronary artery bypass graft (CABG) requires cutting through the patient’s sternum and other tissues to access the heart, then graft arteries and/or veins to flow to the poorly supplied tissue, to (2) minimally invasive, endoscope procedures that do not require cutting the sternum to access the heart and perform the graft and significantly improve healing times and reduced complications, to as illustrated, multiple technologies rise and fall over time with their impacts and their timing considered.

Technology S-Curves in the Management of Ischemic Heart Disease

(Note: These curves are generally for illustrative purposes only; some likely dynamics may not be well represented in the above. Also note that, in practice, demand for old technologies doesn’t cease, but declines at a rate connected to the rise of competing technologies, so after peaking, the S-curves start a descent at various rates toward zero. Also, separately note that the “PTCA” labeled curve corresponds to percutaneous transluminal coronary angioplasty, encompassing the percutaneous category of approaches to ischemic heart disease. PTCA itself has evolved from balloon angioplasty alone to the adjunctive use of stents of multiple material types with or without drug elution and even bioabsorbable stents.)
Source: MedMarket Diligence, LLC

Resulting Technology Shifts

Falling: Open surgical instrumentation, bare metal stents.
Rising and leveling: thoracoscopic instrumentation, monitors
Rising later: stem-cells, extracellular matrices, atherosclerosis-reducing drugs
Rising even later: gene therapy

The minimally invasive technologies enabled by thoracoscopy (used in MIDCAB) and catheterization pulled just about all the demand out of open coronary artery bypass grafting, though the bare metal stents used initially alongside angioplasty have also been largely replaced by drug-eluting stents, which also may be replaced by drug-eluting balloon angioplasty. Stem cells and related technologies used to deliver them will later represent new growth in treatment of ischemia, at least to some degree at the expense of catheterization (PTCA and percutaneous CABG). Eventually, gene therapy may prove able to prevent the ischemia to develop in the first place.

  • Wound Management Past, Current, and Future Technologies
    • Gauze bandages/dressings
    • Hydrogel, alginate, and antimicrobial dressings
    • Negative pressure wound therapy (NPWT)
    • Bioengineered skin substitutes
    • Growth factors

Another great example of a disease or condition treated by multiple evolving technologies over time is wound management, which has evolved from simple gauze dressings to advanced dressings, to systems like negative pressure wound therapy, hyperbaric oxygen and others, to biological growth factors to bioengineered skin and skin substitutes.

Technology S-Curves in the Management of Ischemic Heart Disease

Source: MedMarket Diligence, LLC

Resulting Technology Shifts

Falling: Traditional gauze and other simple dressings
Falling: NPWT, hyperbaric oxygen
Rising: Advanced wound dressings, bioengineered skin, growth factors

Wound management has multiple technologies concurrently available, rather than sequential (when one largely replaces the other) over time. Unsurprisingly, traditional dressings are in decline. Equipment-related technologies like NPWT and hyperbaric oxygen are on the wane as well. While wound management is not a high growth area, advanced dressings are rising due to their ability to heal wounds faster, an important factor considering that chronic, slow-healing wounds are a significant contributor to high costs. Bioengineered skin is patient-specific, characterized by faster healing and, therefore, rising.