Market positions in sealants, glues, hemostats fluid in U.S., Europe, Asia/Pacific

Market shares for sales of sealants, glues, and hemostats vary considerably from region to region globally due to the significant variations in the local market demand, rate of adoption of specific manufacturers’ products, the regulatory climate, local economies, and other factors. Consequently, manufacturers with significant share of sales in the U.S. or Europe or Asia/Pacific may have considerably lower or higher shares in other regions.

In the U.S., Ethicon and Baxter have dominant positions in sales of surgical sealants. However, in Europe and Asia/Pacific, Baxter has substantially smaller position, particularly relative to competitors like Takeda Pharmaceuticals and The Medicines Company.

Source: Report #S290, MedMarket Diligence, LLC

In the market for hemostats, similarly, Ethicon and Baxter have dominant position in the U.S. market, but in Asia/Pacific and Europe, Baxter is subordinate to Takeda Pharmaceuticals, CryoLife, and others.

Source: Report #S290, MedMarket Diligence, LLC

In medical glues, CryoLife has risen to the fore with its BioGlue, such that it has a global leading position as well as specifically in the U.S., Europe, and Asia/Pacific.

Source: Report #S290, MedMarket Diligence, LLC

Hemostat sales growth and opportunity

Hemostats are normally used in surgical procedures only when conventional bleeding control methods are ineffective or impractical. The hemostat market offers opportunities as customers seek products that better meet their needs. Above and beyond having hemostats that are effective and reliable, additional improvements that clinicians wish to see in hemostat products include:

  • laparoscopy-friendly
  • work regardless of whether the patient is on anticoagulants or not
  • easy to prepare and store, with a long shelf life
  • antimicrobial
  • transparent so that the surgeon continues to have a clear field of view
  • non-toxic
  • preferably not made from human or animal materials.

 

Source: “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022”; MedMarket Diligence, LLC (Report #S290).

Interventional and Surgical Cardiovascular Procedure Volumes

Cardiovascular diseases (CVDs) are a variety of acute and chronic medical conditions associated with an inability of the cardiovascular system to sustain an adequate blood flow and supply of oxygen and nutrients to organs and tissues of the body. The CVD conditions may be manifested by the obstruction or deformation of arterial and venous pathways, distortion in the electrical conducting and pacing activity of the heart, and impaired pumping function of the heart muscle, or some combination of circulatory, cardiac rhythm, and myocardial disorders.

These diseases are treated via the following surgical and interventional procedures:

  • Coronary artery bypass graft (CABG) surgery;
  • Coronary angioplasty and stenting;
  • Lower extremity arterial bypass surgery;
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting;
  • Peripheral drug-coated balloon angioplasty;
  • Peripheral atherectomy;
  • Surgical and endovascular aortic aneurysm repair;
  • Vena cava filter placement
  • Endovenous ablation;
  • Mechanical venous thrombectomy;
  • Venous angioplasty and stenting;
  • Carotid endarterectomy;
  • Carotid artery stenting;
  • Cerebral thrombectomy;
  • Cerebral aneurysm and AVM surgical clipping;
  • Cerebral aneurysm and AVM coiling & flow diversion;
  • Left Atrial Appendage closure;
  • Heart valve repair and replacement surgery;
  • Transcatheter valve repair and replacement;
  • Congenital heart defect repair;
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices;
  • Pacemaker implantation;
  • Implantable cardioverter defibrillator placement;
  • Cardiac resynchronization therapy device placement;
  • Standard SVT & VT ablation; and
  • Transcatheter AFib ablation

In 2016, the cumulative worldwide volume of these procedures is projected to approach 15.05 million surgical and transcatheter interventions. This will include:

  • roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

Below is illustrated the overall global growth for each of the major categories of procedures through 2022.

Source: MedMarket Diligence, LLC; Report #C500.  (Full report available online.)

There is considerable variation in the growth of cardiovascular procedures globally, but most growth is coming out of Asia/Pacific. For example, within the area of venous interventions, the growth in the use of endovenous ablation for chronic venous insufficiency is markedly higher in Asia/Pacific than in other regions, though the U.S. will remain the largest volume of these procedures.

Source: MedMarket Diligence, LLC; Report #C500.  (Full report available online.)


“Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022” (Report #C500), published August 2016. See description, table of contents, list of exhibits at link. Available for purchase and download from link.

Market fragmentation and growth, decline in wound management

The market for wound management products — as varied as negative pressure wound therapy, skin grafts, hydrogel dressings, and growth factors — is a sort of free-for-all of offerings designed to accelerate healing, reduce treatment costs, yield better outcomes, or all of these and more. With so many sectors, and with well-established ones tending toward commodity, there can be many competitors, with few having significant market shares. Yet in several areas, quite remarkable growth is still available.  Excluding traditional bandage and dressings, three companies — S&N, Acelity and Mölnlycke — control over half the worldwide market.

Global Advanced Wound Market Market Shares

Source: MedMarket Diligence, LLC; Report #S251. Order online.

Growth is coming in the advanced areas of bioengineered skin, the ever-needed antimicrobials, and the great demand for foam dressings.


Source: MedMarket Diligence, LLC; Report #S251. Order online.

 

Viewed another way, with size and growth mapped relative to each other…

 

Source: MedMarket Diligence, LLC; Report #S251. Order online.

The U.S. remains the biggest consumer of wound management products, and this is not expected to materially change. Europe is seeing relative decline, however, as Asia Pacific demand ramps up:

Source: MedMarket Diligence, LLC; Report #S251. Order online.


The MedMarket Diligence report #S251, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World,” is detailed at link and is available for purchase and download online

Peripheral Stenting Worldwide: Arterial, Venous, BMS, DES, AAA, TAA

First introduced about two decades ago as a bailout technique for suboptimal or failed iliac angioplasty, peripheral vascular stenting gradually emerged as a valuable and versatile tool for a variety of primary and adjuvant applications outside the domain of coronary and cerebral vasculature.  Today, peripheral vascular stenting techniques are commonly employed in the management of the most prevalent occlusive circulatory disorders and other pathologies affecting the abdominal and thoracic aortic tree and lower extremity arterial bed. Stents are also increasingly used in the management of the debilitating conditions like venous outflow obstruction associated with deep venous thrombosis and chronic venous insufficiency.

Notwithstanding a relative maturity of the core technology platforms and somewhat problematic opportunities for conversion to value-adding peripheral drug-eluting systems, peripheral vascular stenting appears to have a significant room for qualitative and quantitative growth both in established and emerging peripheral indications.

A panoply of stenting systems are available for the management of occlusive disorders and other pathologies affecting peripheral arterial and venous vasculature. Systems include lower extremity bare metal and drug-eluting stents for treatment of symptomatic PAD and critical limb ischemia resulting from iliac, femoropopliteal and infrapopliteal occlusive disease; stent-grafting devices used in endovascular repair of abdominal and thoracic aortic aneurysms; as well as a subset of indication-specific and multipurpose peripheral stents used in recanalization of iliofemoral and iliocaval occlusions resulting in CVI.

In 2015, these peripheral stenting systems were employed in approximately 1.565 million revascularization procedures worldwide, of which the lower extremity arterial stenting accounted for almost 1.252 million interventions (or 80.9%), followed by AAA and TAA endovascular repairs with 162.4 thousand interventions (or 10.5%) and peripheral venous stenting used in an estimated 132.6 thousand patients (or 8.6% of the total).

The U.S. clinical practices performed almost 528 thousand covered peripheral arterial and venous procedures (or 34.1% of the worldwide total), followed by the largest Western European states with over 511 thousand interventions (or 33.1%), major Asian-Pacific states with close to 377 thousand interventions (or 24.4%), and the rest-of-the-world with about 131 thousand peripheral stent-based interventions (or 8.4%).

Below is illustrated the global market for peripheral stenting by region in 2016 and by segment from 2014 to 2020.

Source: MedMarket Diligence, LLC; Report #V201. Available online.

 

Source: MedMarket Diligence, LLC; Report #V201. Available online.

Medical and Surgical Sealants, Glues, and Hemostats, to 2022

There are several different classes of surgical sealants, glues and hemostatic products used to prevent or stop bleeding, or to close a wound or reinforce a suture line. These include fibrin sealants, surgical sealants, mechanical hemostats, active hemostats, flowable hemostats, and glues. Both sealants and medical glues are increasingly used either as an adjunct to sutures or to replace sutures.

Medical Sealants

Fibrin sealants are made of a combination of thrombin and fibrinogen. These sealants may be sprayed on the bleeding surface, or applied using a patch. Surgical sealants might be made of glutaraldehyde and bovine serum albumin, polyethylene glycol polymers, and cyanoacrylates.

Sealants are most often used to stop bleeding over a large area. If the surgeon wishes to fasten down a flap without using sutures, or in addition to using sutures, then the product used is usually a medical glue.

Source: MedMarket Diligence, LLC; Report #S290.

Hemostatic Products

The surgeon and the perioperative nurse have a variety of hemostats from which to choose, as they are not all alike in their applications and efficacy. Selection of the most appropriate hemostat requires training and experience, and can affect the clinical outcome, as well as decrease treatment costs. Some of the factors that enter into the decision-making process include the size of the wound, the amount of hemorrhaging, potential adverse effects, whether the procedure is MIS or open surgery, and others.

Active hemostats contain thrombin products which may be derived from several sources, such as bovine pooled plasma purification, human pooled plasma purification, or through human recombinant manufacturing processes. Flowable-type hemostats are made of a granular bovine or porcine gelatin that is combined with saline or reconstituted thrombin, forming a flowable putty that may be applied to the bleeding area.
Mechanical hemostats, such as absorbable gelatin sponge, collagen, cellulose, or polysaccharide-based hemostats applied as sponges, fleeces, bandages, or microspheres, are not included in this analysis.

Source: MedMarket Diligence, LLC; Report #S290.

Medical Glues

Sealants and glues are terms which are often used interchangeably, which can be confusing. In this report, a medical glue is defined as a product used to bond two surfaces together securely. Surgeons are increasingly reaching for medical glues to either help secure a suture line, or to replace sutures entirely in the repair of soft tissues. Medical glues are also utilized in repairing bone fractures, especially for highly comminuted fractures that often involve many small fragments. This helps to spread out the force-bearing surface, rather than focusing weight-bearing on spots where a pin has been inserted.

Thus, the surgeon has a fairly wide array of products from which to choose. The choice of which surgical hemostat or sealant to use depends on several factors, including the procedure being conducted, the type of bleeding, severity of the hemorrhage, the surgeon’s experience with the products, the surgeon’s preference, the price of the product and availability at the time of surgery. For example, a product which has a long shelf life and does not require refrigeration or other special storage, and which requires no special preparation, usually holds advantages over a product which must be mixed before use, or held in a refrigerator during storage, then allowed to warm up to room temperature before use.

Source: MedMarket Diligence, LLC; Report #S290.


From “Worldwide Market for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.” See details at link. Order online.

Regional Markets for Surgical Sealants, 2015 and 2022

The fastest growth in the sales of surgical sealants over the next decade will be in the Asia-Pacific region, driven primarily by very strong healthcare market growth in China, and reaching a CAGR (2016-2022) of at least 13.97%. The growth rate in China would be even higher, but will be dampened for the time being by the lack of surgeons trained in the proper use of these products, as well as the limitations of reaching a dispersed patient population. Nonetheless, the A/P share of the global sealants market will double in the next seven years!

Below illustrates the geographic distribution of surgical sealants (fibrin and others) in 2015.

Regional Markets for Sealants, Fibrin and Other Sealant Products,
2015 & 2022, USD Millions

2015screen-shot-2016-11-11-at-8-52-44-am

2022

screen-shot-2016-11-11-at-8-53-17-am

Source: MedMarket Diligence, LLC; Report #S290.


Report #S290 may be purchased online for PDF download or print delivery; in single, site, or global licenses.

Cardiovascular Surgical and Interventional Procedures Worldwide, 2015-2022

In 2016, the cumulative worldwide volume of the the following CVD procedures is projected to approach 15.05 million surgical and transcatheter interventions:

  • roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

screen-shot-2016-11-07-at-7-26-38-am

CABG: Coronary artery bypass graft; PCI: Percutaneous coronary intervention; AAA: Abdominal aortic aneurysm; TAA: Thoracic abdominal aneurysm; CVI: Chronic venous insufficiency; DVT: Deep vein thrombosis; PE: Pulmonary embolectomy.

Source: MedMarket Diligence, LLC; Report #C500, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.” (To request report excerpts, click here.)

The Evolution of Coronary Revascularization Markets

Coronary artery bypass grafting (CABG) is the most common type of cardiovascular surgical intervention, which “bypasses” acute or chronic coronary artery obstructions via a newly created vascular conduit and thus reinstate normal or sufficient blood flow to the ischemic but still viable areas of the myocardium.

The majority of CABG surgeries (up to 75%) are still performed on the fully arrested heart which is accessed via a foot-long incision over the sternum and completely separated patient’s rib cage. Following a full sternotomy, the CABG patient is typically placed on extracorporeal cardiopulmonary bypass (CPB) with a heart-lung machine, which allows the surgeon to operate on a still and bloodless field. Simultaneously, the patient’s greater saphenous vein or internal mammary artery, or both are harvested (mobilized) for use as a bypass conduit in the ongoing procedure. Depending on the location, character and number of the coronary artery occlusions, the surgery might involve between one and seven coronary bypasses.

Once the bypasses are completed, the heart is restarted and, if it functions normally, the patient is removed from the heart-lung machine and the chest is closed up, the sternum is stabilized with stainless steel wire, and the chest and leg wounds are closed with sutures or clips. Patient’s recovery from a routine uncomplicated CABG usually involves seven to ten days of hospital stay, including two to three days spent in the cardiac intensive care unit.

Less Invasive CABG

Over the past decade, several less-invasive versions of the CABG were developed with the view of reducing morbidity and potentially serious complications associated with extensive surgical trauma and the use of aortic clamping and CPB. The current arsenal of less-invasive coronary artery bypass techniques includes minimally-invasive direct CABG (MIDCAB), full-sternotomy “off-pump” CABG (OPCAB), port-access CABG (P-CAB) with peripheral cannulation and endoclamping of aorta, and endoscopic computer (robotics)-assisted CABG (C-CAB).

Designed to limit surgical trauma of conventional CABG, the MIDCAB procedure is best suited for patients with occluding lesions either in the left anterior descending (LAD) artery, or the right coronary artery (RCA). In contrast to conventional CABG, it is performed on a beating heart without the use of CPB. In MIDCAB surgery, access to targeted arteries is achieved through a limited left anterior thoracotomy in the case of occluded LAD, and right thoracotomy or limited lateral thoracotomy in cases involving diseased proximal RCA or circumflex artery. Because of the smaller surgical trauma and off-pump performance (without aorta clamping), the MIDCAB procedure typically results in fewer complications, lower morbidity and shorter hospital stays compared to conventional CABG. However, its utility is limited to a subset of patients with one or two coronary vascular targets, which constitute a small fraction (<3%) of the total caseloads referred for CABG.

The OPCAB procedure is performed on a beating heart after reduction of cardiac motion with a variety of pharmacological and mechanical devices. These include slowing the heart rate with ß-blockers and calcium channel blockers and the use of special mechanical devices intended to stabilize the myocardium and mobilize target vessels. The use of various retraction techniques allows to gain access to vessels on the lateral and inferior surfaces of the heart. Because the OPCAB technique also involves surgical access via median sternotomy, its primary benefit is the avoidance of complications resulting from the use of cardiopulmonary bypass, not surgical trauma.

Over the past decade, the OPCAB surgery emerged as the most popular form of less-invasive coronary artery bypass procedures in the U.S, and Western Europe. By the beginning of this decade, an estimated 25% of all CABGs performed in these geographies were done without the use of CPB. However, in recent years, the relative usage of OPCAB techniques remained largely unchanged. In the view of many cardiac surgeons, the latter was predicated by the increasing morphological complexity of cases referred for CABG (rather than PCI) and generally superior immediate and longer-term bypass graft patency and patient outcomes obtainable with technically less-demanding on-pump CABG surgery.

In contrast to that, the relative usage of “neurological complications sparing” OPCAB techniques is significantly higher in major Asia-Pacific states reaching over 60% of all CABG procedures in China, India, and Japan.

The rarely used P-CAB procedure involves the use of cardiopulmonary bypass and cardioplegia of a globally arrested heart. Vascular access for CPB is achieved via the femoral artery and vein. Compared to the MIDCAB technique, the use of multiple ports allow access to different areas of the heart, thus facilitating more complete revascularization, and the motionless heart may allow a more accurate and reliable anastomosis. In distinction from conventional CABG, median sternotomy is avoided, which reduces trauma and complications. However, potential morbidity of the port-access operation includes multiple wounds at port sites, the limited thoracotomy, and the groin dissection for femoral-femoral bypass. The procedure is also technically difficult and time consuming and therefore has not achieved widespread popularity.

The Hybrid CABG-PCI procedure combines the use of surgical bypass (typically MIDCAB) and percutaneous coronary interventional techniques (angioplasty and stenting) for optimal management of multi-vessel coronary occlusions in high risk patients. The main rationale behind the utilization of hybrid procedure is to achieve maximally possible myocardial revascularization with minimally possible trauma and reduced probability of post-procedural complications. The most common variation of the hybrid revascularization involves MIDCAB-based radial anastomosis between the left anterior descending artery and left internal thoracic artery accompanied by the PTCA/stenting-based recanalization of less critical coronary artery occlusions.

CABG Utilization Trends and Procedure Volumes

Since the advent of coronary angioplasty in the late 1970s, the relative role and share of CABG procedures in myocardial revascularization have been steadily declining due to a continuing penetration of treated patient caseloads by a less invasive PTCA. This general trend was further expedited by the advent of coronary stents. At the very end of the past decade, the rate of transition towards percutaneous coronary interventions in myocardial revascularization started tapering off, primarily due to growing maturity of PTCA/stenting technology and nearly full coverage of patient caseloads with one- or uncomplicated two-vessel disease amendable through angioplasty and stenting. At the same time, a growing popularity of the less-invasive CABG regimens resulted in some additional influx into CABG caseloads from a no-option patient cohort. A less-invasive surgical coronary bypass also emerged as a preferred treatment option for some gray-area patients that were previously referred for sub-optimal PTCA and stenting to avoid potential complications of conventional CABG.

In 2006 – for the first time in about two decades – the U.S. and European volumes of CABG procedures experienced a visible increase, which was repeated in 2007 and reproduced on a smaller and diminishing scale in the following two years.

The cited unexpected reversal of a long established downward procedural trend reflected an acute (and, probably, somewhat overblown) end-users’ concern about long-term safety (AMI-prone late thrombosis) of drug-eluting stents (DES), which prompted a steep decline in utilization of DES in 2006, 2007, followed by a smaller and tapering decreases in 2008 and 2009 with corresponding migration of advanced CHD patients referred for radical intervention to bare metal stenting and CABG surgery.

In 2010 – 2015 the volume of CABG surgeries remained relatively unchanged, notwithstanding a visible decline in percutaneous coronary interventions and overall myocardial revascularization procedures.

In the forthcoming years, the cumulative global volume of CABG procedures is unlikely to experience any significant changes, while their relative share in coronary revascularization can be expected to decline from about 15.4% in 2015 to roughly 12.3% by the end of the forecast period (2022). The cited assertion is based on the expectation of eventual stabilization and renewal of nominal growth in utilization of PCI in the U.S. and Europe coupled with continuation of robust expansion in the usage of percutaneous revascularization techniques in Asia-Pacific (especially India and China, where PCI volumes were growing by 20% and 10% annually over the past half decade, according to local healthcare authorities).

In 2016, the worldwide volume of CABG surgeries leveled at approximately 702.5 thousand procedures, of which roughly 35.2% involved the use of less-invasive OPCAB techniques. During the forecast period, the global number of CABG procedures is projected to experience a nominal 0.1% average annual increase to about 705.9 corresponding surgical interventions in the year 2022. Within the same time frame, the relative share of less-invasive bypass surgeries is expected to register modest gains expanding to approximately 36.7% of the total in 2022.

Coronary Revascularization Procedures, 2015-2022 
(Figures in thousands)

screen-shot-2016-11-02-at-11-17-58-am
CABG and Primary PCI in Coronary Revascularization to 2022.

In, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”, Report #C500, we forecast cardiovascular procedure utilization, caseload, technology trends, and device market impacts, for the U.S., Western Europe, Asia/Pacific, and Rest of World.

Cerebral thrombectomy procedures worldwide

In 2014, approximately 33.7 thousand cerebral thrombectomy procedures were performed worldwide, of which United States and largest European states accounted for roughly 46% and 37%, largest Asian states contributed 10.4% and the rest of the world added remaining 6.5%.

The 2014 global cerebral thrombectomy system sales were estimated at approximately $166 million, of which the United States accounted for about $79.1 million (or ~47.7%), followed by the largest Western European states with $59.4 million (or 35.8%), major Asian states with $17 million (or 10.2%) and the rest-of-the-world with $10.5 million (or 6.3% of the total).

In the view of the industry insiders and practicing neurointerventional radiologists, relatively modest volume of life-saving cerebral thrombectomy procedures and corresponding product sales appear to reflect still insufficient body of favorable clinical data and inhibiting impact of the published dubious findings from the major IMS-III study.

The latter compared first-generation cerebral thrombectomy techniques with standard medical (and tPA) therapy and asserted that endovascular clot retrieval interventions did not result in visible improvement in patient outcomes. The cited conclusions clearly contradict results of numerous randomized trials with available second-generation cerebral revascularization systems, which appear to documented superiority of the latter system in management of acute ischemic stroke caseloads.

It is generally assumed that the situation with end-user adoption is likely to improve dramatically in two-three years from now, when results of the ongoing major U.S. and international trials with novel cerebral thrombectomy devices become available.

Based on these assumptions, the cumulative worldwide volume of cerebral thrombectomy procedures is projected to experience accelerated growth to the end of the forecast period resulting in 10.8% overall average annual expansion of corresponding interventions in the forthcoming five years to an estimated 56.2 thousand total procedures worldwide in 2019.

screen-shot-2016-10-17-at-7-14-32-am
From: “Emerging Global Market for Neurointerventional Technologies in Stroke, 2014-2019”, Report #C310.

The worldwide market for cerebral clot retrieval systems is forecast to grow at a slightly slower pace expanding on average 10.1% per annum to about $268.4 million in the year 2019. Price pressure will keep sales growth lower than procedure volume gains.

The largest absolute dollar gains can be expected in the U.S. market (which is projected to add $55.9 million in corresponding device revenues), followed by the West European marketplace (+ $30.6 million), major Asian state business (+ $11.2 million) and the rest-of-the-world (+ $4.7 million).