The Evolution of Coronary Revascularization Markets

Coronary artery bypass grafting (CABG) is the most common type of cardiovascular surgical intervention, which “bypasses” acute or chronic coronary artery obstructions via a newly created vascular conduit and thus reinstate normal or sufficient blood flow to the ischemic but still viable areas of the myocardium.

The majority of CABG surgeries (up to 75%) are still performed on the fully arrested heart which is accessed via a foot-long incision over the sternum and completely separated patient’s rib cage. Following a full sternotomy, the CABG patient is typically placed on extracorporeal cardiopulmonary bypass (CPB) with a heart-lung machine, which allows the surgeon to operate on a still and bloodless field. Simultaneously, the patient’s greater saphenous vein or internal mammary artery, or both are harvested (mobilized) for use as a bypass conduit in the ongoing procedure. Depending on the location, character and number of the coronary artery occlusions, the surgery might involve between one and seven coronary bypasses.

Once the bypasses are completed, the heart is restarted and, if it functions normally, the patient is removed from the heart-lung machine and the chest is closed up, the sternum is stabilized with stainless steel wire, and the chest and leg wounds are closed with sutures or clips. Patient’s recovery from a routine uncomplicated CABG usually involves seven to ten days of hospital stay, including two to three days spent in the cardiac intensive care unit.

Less Invasive CABG

Over the past decade, several less-invasive versions of the CABG were developed with the view of reducing morbidity and potentially serious complications associated with extensive surgical trauma and the use of aortic clamping and CPB. The current arsenal of less-invasive coronary artery bypass techniques includes minimally-invasive direct CABG (MIDCAB), full-sternotomy “off-pump” CABG (OPCAB), port-access CABG (P-CAB) with peripheral cannulation and endoclamping of aorta, and endoscopic computer (robotics)-assisted CABG (C-CAB).

Designed to limit surgical trauma of conventional CABG, the MIDCAB procedure is best suited for patients with occluding lesions either in the left anterior descending (LAD) artery, or the right coronary artery (RCA). In contrast to conventional CABG, it is performed on a beating heart without the use of CPB. In MIDCAB surgery, access to targeted arteries is achieved through a limited left anterior thoracotomy in the case of occluded LAD, and right thoracotomy or limited lateral thoracotomy in cases involving diseased proximal RCA or circumflex artery. Because of the smaller surgical trauma and off-pump performance (without aorta clamping), the MIDCAB procedure typically results in fewer complications, lower morbidity and shorter hospital stays compared to conventional CABG. However, its utility is limited to a subset of patients with one or two coronary vascular targets, which constitute a small fraction (<3%) of the total caseloads referred for CABG.

The OPCAB procedure is performed on a beating heart after reduction of cardiac motion with a variety of pharmacological and mechanical devices. These include slowing the heart rate with ß-blockers and calcium channel blockers and the use of special mechanical devices intended to stabilize the myocardium and mobilize target vessels. The use of various retraction techniques allows to gain access to vessels on the lateral and inferior surfaces of the heart. Because the OPCAB technique also involves surgical access via median sternotomy, its primary benefit is the avoidance of complications resulting from the use of cardiopulmonary bypass, not surgical trauma.

Over the past decade, the OPCAB surgery emerged as the most popular form of less-invasive coronary artery bypass procedures in the U.S, and Western Europe. By the beginning of this decade, an estimated 25% of all CABGs performed in these geographies were done without the use of CPB. However, in recent years, the relative usage of OPCAB techniques remained largely unchanged. In the view of many cardiac surgeons, the latter was predicated by the increasing morphological complexity of cases referred for CABG (rather than PCI) and generally superior immediate and longer-term bypass graft patency and patient outcomes obtainable with technically less-demanding on-pump CABG surgery.

In contrast to that, the relative usage of “neurological complications sparing” OPCAB techniques is significantly higher in major Asia-Pacific states reaching over 60% of all CABG procedures in China, India, and Japan.

The rarely used P-CAB procedure involves the use of cardiopulmonary bypass and cardioplegia of a globally arrested heart. Vascular access for CPB is achieved via the femoral artery and vein. Compared to the MIDCAB technique, the use of multiple ports allow access to different areas of the heart, thus facilitating more complete revascularization, and the motionless heart may allow a more accurate and reliable anastomosis. In distinction from conventional CABG, median sternotomy is avoided, which reduces trauma and complications. However, potential morbidity of the port-access operation includes multiple wounds at port sites, the limited thoracotomy, and the groin dissection for femoral-femoral bypass. The procedure is also technically difficult and time consuming and therefore has not achieved widespread popularity.

The Hybrid CABG-PCI procedure combines the use of surgical bypass (typically MIDCAB) and percutaneous coronary interventional techniques (angioplasty and stenting) for optimal management of multi-vessel coronary occlusions in high risk patients. The main rationale behind the utilization of hybrid procedure is to achieve maximally possible myocardial revascularization with minimally possible trauma and reduced probability of post-procedural complications. The most common variation of the hybrid revascularization involves MIDCAB-based radial anastomosis between the left anterior descending artery and left internal thoracic artery accompanied by the PTCA/stenting-based recanalization of less critical coronary artery occlusions.

CABG Utilization Trends and Procedure Volumes

Since the advent of coronary angioplasty in the late 1970s, the relative role and share of CABG procedures in myocardial revascularization have been steadily declining due to a continuing penetration of treated patient caseloads by a less invasive PTCA. This general trend was further expedited by the advent of coronary stents. At the very end of the past decade, the rate of transition towards percutaneous coronary interventions in myocardial revascularization started tapering off, primarily due to growing maturity of PTCA/stenting technology and nearly full coverage of patient caseloads with one- or uncomplicated two-vessel disease amendable through angioplasty and stenting. At the same time, a growing popularity of the less-invasive CABG regimens resulted in some additional influx into CABG caseloads from a no-option patient cohort. A less-invasive surgical coronary bypass also emerged as a preferred treatment option for some gray-area patients that were previously referred for sub-optimal PTCA and stenting to avoid potential complications of conventional CABG.

In 2006 – for the first time in about two decades – the U.S. and European volumes of CABG procedures experienced a visible increase, which was repeated in 2007 and reproduced on a smaller and diminishing scale in the following two years.

The cited unexpected reversal of a long established downward procedural trend reflected an acute (and, probably, somewhat overblown) end-users’ concern about long-term safety (AMI-prone late thrombosis) of drug-eluting stents (DES), which prompted a steep decline in utilization of DES in 2006, 2007, followed by a smaller and tapering decreases in 2008 and 2009 with corresponding migration of advanced CHD patients referred for radical intervention to bare metal stenting and CABG surgery.

In 2010 – 2015 the volume of CABG surgeries remained relatively unchanged, notwithstanding a visible decline in percutaneous coronary interventions and overall myocardial revascularization procedures.

In the forthcoming years, the cumulative global volume of CABG procedures is unlikely to experience any significant changes, while their relative share in coronary revascularization can be expected to decline from about 15.4% in 2015 to roughly 12.3% by the end of the forecast period (2022). The cited assertion is based on the expectation of eventual stabilization and renewal of nominal growth in utilization of PCI in the U.S. and Europe coupled with continuation of robust expansion in the usage of percutaneous revascularization techniques in Asia-Pacific (especially India and China, where PCI volumes were growing by 20% and 10% annually over the past half decade, according to local healthcare authorities).

In 2016, the worldwide volume of CABG surgeries leveled at approximately 702.5 thousand procedures, of which roughly 35.2% involved the use of less-invasive OPCAB techniques. During the forecast period, the global number of CABG procedures is projected to experience a nominal 0.1% average annual increase to about 705.9 corresponding surgical interventions in the year 2022. Within the same time frame, the relative share of less-invasive bypass surgeries is expected to register modest gains expanding to approximately 36.7% of the total in 2022.

Coronary Revascularization Procedures, 2015-2022 
(Figures in thousands)

screen-shot-2016-11-02-at-11-17-58-am
CABG and Primary PCI in Coronary Revascularization to 2022.

In, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”, Report #C500, we forecast cardiovascular procedure utilization, caseload, technology trends, and device market impacts, for the U.S., Western Europe, Asia/Pacific, and Rest of World.

Medtech Fundings for September 2016

Fundings in medical technology stand at $900 million for the month, led by the $345 million private placement by Insulet Corp., followed by the $168 million funding of Intarcia Therapeutics, the $86 million IPO of iRhythm Technologies, and the $75 million IPO of Obalon Therapeutics.

Below are the top fundings for the month thus far. Revisit this post (and refresh your browser) through September to see updates.

For the complete list of September 2016 fundings, see link.

screen-shot-2016-09-26-at-10-54-28-am

Source: Compiled by MedMarket Diligence, LLC.

For a historical list of medtech fundings by month since 2009, see link.

The future of cardiovascular medicine

The MedMarket Diligence has published a global analysis and forecast of cardiovascular procedures, designed to be a resource for active participants or others with interest in the future of cardiovascular medicine and cardiovascular technologies.

See the press release on Medgadget.

Medtech fundings for August 2016

The top fundings for medical technology companies in August 2015 totaled a modest $335.1 million.


See the 2016 global reports:

Surgical Sealants, Glues, Hemostats, 2015-2022. details

Global Dynamics of Cardiovascular Surgical and Interventional Procedures, 2015–2022. details


Fundings for August 2016 were led by the $93 million funding of CVRx, followed by the $49 million funding of Auris Surgical Robots, and the $30 million funding of VytronUS. See link for the complete list.

IMG_2020

For a comprehensive list of medtech fundings since 2009, see link.