The rise and fall of medical technologies

When does one recognize that horse-and-buggy whips are in decline and auto-mobiles are on the rise?

When does one recognize that a new technology is a definite advance over established ones in the treatment of particular disease, in cost or quality?

Technologies go through life cycles.

A medical technology is introduced that is found effective in the management of a disease. Over time, the technology is improved upon marginally, but eventually a new technology, often radically different, emerges that is more effective or better (cheaper, less invasive, easier to use). It enters the market, takes market share from and grows, only to be later eclipsed by a new (apologies) “paradigm”. Each new technology, marginal or otherwise, advances the limit of what is possible in care.

Predicting the marginal and the more radical innovation is necessary to illustrate where medicine is headed, and its impact. Many stakeholders have interest in this — insurance companies (reimbursing technologies or covering the liabilities), venture capitalists, healthcare providers, patients, and the medical technology companies themselves.

S-curves illustrate the rise in performance or demand over time for new technologies and show the timing and relative impact of newer technologies when they emerge. Importantly, the relative timing and impact of emerging technologies can be qualitatively and quantitatively predicted. Historic data is extremely useful predicting the rise and fall of specific medical technologies in specific disease treatment.

Following are two examples of diseases with multiple technologies arcing through patient demand over time.

  • Ischemic Heart Disease Past, Current, and Future Technologies
    • Open bypass
    • Percutaneous transluminal coronary angioplasty
    • Minimally invasive direct coronary artery bypass (MIDCAB)
    • Percutaneous CABG
    • Stem-cell impregnated heart patches

The treatment of ischemic heart disease, given the seriousness of the disease and its prevalence, has a long history in medicine and within the past fifty years has a remarkable timeline of innovations. Ischemia is condition in which inadequate blood flow to an area due to constriction of blood vessels from inflammation or atherosclerosis can cause cell death. In the case of cardiac ischemia, in which the coronary arteries that supply the heart itself with blood are occluded, the overall cell death can result in myocardial infarction and death.

The effort to re-establish adequate blood flow to heart muscle has evolved from highly invasive surgery in which coronary artery bypass graft (CABG) requires cutting through the patient’s sternum and other tissues to access the heart, then graft arteries and/or veins to flow to the poorly supplied tissue, to (2) minimally invasive, endoscope procedures that do not require cutting the sternum to access the heart and perform the graft and significantly improve healing times and reduced complications, to as illustrated, multiple technologies rise and fall over time with their impacts and their timing considered.

Technology S-Curves in the Management of Ischemic Heart Disease

(Note: These curves are generally for illustrative purposes only; some likely dynamics may not be well represented in the above. Also note that, in practice, demand for old technologies doesn’t cease, but declines at a rate connected to the rise of competing technologies, so after peaking, the S-curves start a descent at various rates toward zero. Also, separately note that the “PTCA” labeled curve corresponds to percutaneous transluminal coronary angioplasty, encompassing the percutaneous category of approaches to ischemic heart disease. PTCA itself has evolved from balloon angioplasty alone to the adjunctive use of stents of multiple material types with or without drug elution and even bioabsorbable stents.)
Source: MedMarket Diligence, LLC

Resulting Technology Shifts

Falling: Open surgical instrumentation, bare metal stents.
Rising and leveling: thoracoscopic instrumentation, monitors
Rising later: stem-cells, extracellular matrices, atherosclerosis-reducing drugs
Rising even later: gene therapy

The minimally invasive technologies enabled by thoracoscopy (used in MIDCAB) and catheterization pulled just about all the demand out of open coronary artery bypass grafting, though the bare metal stents used initially alongside angioplasty have also been largely replaced by drug-eluting stents, which also may be replaced by drug-eluting balloon angioplasty. Stem cells and related technologies used to deliver them will later represent new growth in treatment of ischemia, at least to some degree at the expense of catheterization (PTCA and percutaneous CABG). Eventually, gene therapy may prove able to prevent the ischemia to develop in the first place.

  • Wound Management Past, Current, and Future Technologies
    • Gauze bandages/dressings
    • Hydrogel, alginate, and antimicrobial dressings
    • Negative pressure wound therapy (NPWT)
    • Bioengineered skin substitutes
    • Growth factors

Another great example of a disease or condition treated by multiple evolving technologies over time is wound management, which has evolved from simple gauze dressings to advanced dressings, to systems like negative pressure wound therapy, hyperbaric oxygen and others, to biological growth factors to bioengineered skin and skin substitutes.

Technology S-Curves in the Management of Ischemic Heart Disease

Source: MedMarket Diligence, LLC

Resulting Technology Shifts

Falling: Traditional gauze and other simple dressings
Falling: NPWT, hyperbaric oxygen
Rising: Advanced wound dressings, bioengineered skin, growth factors

Wound management has multiple technologies concurrently available, rather than sequential (when one largely replaces the other) over time. Unsurprisingly, traditional dressings are in decline. Equipment-related technologies like NPWT and hyperbaric oxygen are on the wane as well. While wound management is not a high growth area, advanced dressings are rising due to their ability to heal wounds faster, an important factor considering that chronic, slow-healing wounds are a significant contributor to high costs. Bioengineered skin is patient-specific, characterized by faster healing and, therefore, rising.

The global dynamics of cardiovascular surgical and interventional procedures

This is an excerpt from Report #C500, “Cardiovascular Procedures to 2022.”

Cardiovascular Procedures in 2016

• Coronary artery bypass graft (CABG) surgery;
 • Coronary angioplasty and stenting;
 • Lower extremity arterial bypass surgery;
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting;
  • Peripheral drug-coated balloon angioplasty;
  • Peripheral atherectomy;
  • Surgical and endovascular aortic aneurysm repair;
  • Vena cava filter placement
  • Endovenous ablation;
  • Mechanical venous thrombectomy;
  • Venous angioplasty and stenting;
  • Carotid endarterectomy;
  • Carotid artery stenting;
  • Cerebral thrombectomy;
  • Cerebral aneurysm and AVM surgical clipping;
  • Cerebral aneurysm and AVM coiling & flow diversion;
  • Left Atrial Appendage closure;
  • Heart valve repair and replacement surgery;
  • Transcatheter valve repair and replacement;
  • Congenital heart defect repair;
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices;
  • Pacemaker implantation;
  • Implantable cardioverter defibrillator placement;
  • Cardiac resynchronization therapy device placement;
  • Standard SVT & VT ablation; and
  • Transcatheter AFib ablation

In 2016, the cumulative worldwide volume of the most prevalent cardiac surgeries and other  cardiovascular procedures (at right) is projected to approach 15.05 million surgical and transcatheter interventions. This will include:

  • in coronart artery disease, roughly 4.73 million coronary revascularization procedures via coronary artery bypass graft (CABG) and percutaneous coronary intervention (PCI) or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million  chronic venous insufficiency, deep vein thrombosis, and pulmonary embolism targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and  valve replacement or valve repair  (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

During the period 2016 to 2022, the total worldwide volume of covered cardiovascular procedures is forecast to expand on average by 3.7% per annum to over 18.73 million corresponding surgeries and transcatheter interventions in the year 2022. The largest absolute gains can be expected in peripheral arterial interventions (thanks to explosive expansion in utilization of drug-coated balloons in all market geographies), followed by coronary revascularization (supported by continued strong growth in Chinese and Indian PCI utilization) and endovascular venous interventions (driven by grossly underserved patient caseloads within the same Chinese and Indian market geography).

The latter (venous) indications are also expected to register the fastest (5.1%) relative procedural growth, followed by peripheral revascularization (with 4.0% average annual advances) and aortic aneurysm repair (projected to show a 3.6% average annual expansion).

http://mediligence.com/c500/

Geographically, Asian-Pacific (APAC) market geography accounts for slightly larger share of the global CVD procedure volume than the U.S. (29.5% vs 29,3% of the total), followed by the largest Western European states (with 23.9%) and ROW geographies (with 17.3%). Because of the faster growth in all covered categories of CVD procedures, the share of APAC can be expected to increase to 33.5% of the total by the year 2022, mostly at the expense of the U.S. and Western Europe.

However, in relative per capita terms, covered APAC territories (e.g., China and India) are continuing to lag far behind developed Western states in utilization rates of therapeutic CVD interventions with roughly 1.57 procedures per million of population performed in 2015 for APAC region versus about 13.4 and 12.3 CVD interventions done per million of population in the U.S. and largest Western European countries.


Report #C500: “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.” Request excerpts.

This report may be purchased for immediate download at link.

MedMarket Future: Developments in Growth Technologies

Proliferation of graphene applications

The nature of graphene’s structure and its resulting traits are responsible for a tremendous burst of research focused on applications.

  • Find cancer cells. Research at the University of Illinois at Chicago showed that interfacing brain cells on the surface of a graphene sheet allows the ability to differentiate a single hyperactive cancerous cell from a normal cell. This represents a noninvasive technique for the early detection of cancer.
  • Graphene sheets capture cells efficiently. In research similar to that U. Illinois, modification of the graphene sheet by mild heating enables annealing of specific targets/analytes on the sheet which then can be tested. This, too, offers noninvasive diagnostics.
  • Contact lens coated with graphene. While the value of the development is yet to be seen, researchers in Korea have learned that contact lenses coated with graphene are able to shield wearers’ eyes from electromagnetic radiation and dehydration.
  • Cheaply mass-producing graphene using soybeans. A real hurdle to graphene’s widespread use in a variety of applications is the cost to mass produce it, but Australia’s CSIRO has shown that an ambient air process to produce graphene from soybean oil, which is likely to accelerate graphenes’ development for commercial use.

Materials

Advanced materials development teams globally are spinning out new materials that have highly specialized features, with the ability to be manufactured under tight control.

  • 3D manufacturing leads to highly complex, bio-like materials. With applications across many industries using “any material that can be crushed into nanoparticles”, University of Washington research has demonstrated the ability to 3D engineer complex structures, including for use as biological scaffolds.
  • Hydrogels and woven fiber fabric. Hokkaido University researchers have produced woven polyampholyte (PA) gels reinforced with glass fiber. Materials made this way have the structural and dynamic features to make them amenable for use in artificial ligaments and tendons.
  • Sound-shaping metamaterial. Research teams at the Universities of Sussex and Bristol have developed acoustic metamaterials capable of creating shaped sound waves, a development that will have a potentially big impact on medical imaging.

Organ-on-a-chip

In vitro testing models that more accurately reflect biological systems for drug testing and development will facilitate clinical diagnostics and clinical research.

  • Stem cells derived neuronal networks grown on a chip. Scientists at the University of Bern have developed an in vitro stem cell-based bioassay grown on multi-electrode arrays capable of detecting the biological activity of Clostridium botulinum neurotoxins.
  • Used for mimicking heart’s biomechanical properties. At Vanderbilt University, scientists have developed an organ-on-a-chip configuration that mimics the heart’s biomechanical properties. This will enable drug testing to gauge impact on heart function.
  • Used for offering insights on premature aging, vascular disease. Brigham and Women’s Hospital has developed organ-on-a-chip model designed to study progeria (Hutchinson-Gilford progeria syndrome), which primarily affects vascular cells, making this an affective method for the first time to simultaneously study vascular diseases and aging.

Cardiovascular procedure volume growth (interventional and surgical)

Cardiovascular surgical and interventional procedures are performed to treat conditions causing inadequate blood flow and supply of oxygen and nutrients to organs and tissues of the body. These conditions include the obstruction or deformation of arterial and venous pathways, distortion in the electrical conducting and pacing activity of the heart, and impaired pumping function of the heart muscle, or some combination of circulatory, cardiac rhythm, and myocardial disorders. Specifically, these procedures are:

  • Coronary artery bypass graft (CABG) surgery;
  • Coronary angioplasty and stenting;
  • Lower extremity arterial bypass surgery;
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting;
  • Peripheral drug-coated balloon angioplasty;
  • Peripheral atherectomy;
  • Surgical and endovascular aortic aneurysm repair;
  • Vena cava filter placement
  • Endovenous ablation;
  • Mechanical venous thrombectomy;
  • Venous angioplasty and stenting;
  • Carotid endarterectomy;
  • Carotid artery stenting;
  • Cerebral thrombectomy;
  • Cerebral aneurysm and AVM surgical clipping;
  • Cerebral aneurysm and AVM coiling & flow diversion;
  • Left Atrial Appendage closure;
  • Heart valve repair and replacement surgery;
  • Transcatheter valve repair and replacement;
  • Congenital heart defect repair;
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices;
  • Pacemaker implantation;
  • Implantable cardioverter defibrillator placement;
  • Cardiac resynchronization therapy device placement;
  • Standard SVT & VT ablation; and
  • Transcatheter AFib ablation

For 2016 to 2022, the total worldwide volume of these cardiovascular procedures is forecast to expand on average by 3.7% per year to over 18.73 million corresponding surgeries and transcatheter interventions in the year 2022. The largest absolute gains can be expected in peripheral arterial interventions (thanks to explosive expansion in utilization of drug-coated balloons in all market geographies), followed by coronary revascularization (supported by continued strong growth in Chinese and Indian PCI utilization) and endovascular venous interventions (driven by grossly underserved patient caseloads within the same Chinese and Indian market geography).

Venous indications are also expected to register the fastest (5.1%) relative procedural growth, followed by peripheral revascularization (with 4.0% average annual advances) and aortic aneurysm repair (projected to show a 3.6% average annual expansion).

Source: MedMarket Diligence, LLC; “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022,” (Report #C500).

Geographically, Asian-Pacific (APAC) market geography accounts for slightly larger share of the global CVD procedure volume than the U.S. (29.5% vs 29,3% of the total), followed by the largest Western European states (with 23.9%) and ROW geographies (with 17.3%). Because of the faster growth in all covered categories of CVD procedures, the share of APAC can be expected to increase to 33.5% of the total by the year 2022, mostly at the expense of the U.S. and Western Europe.

However, in relative per capita terms, covered APAC territories (e.g., China and India) are continuing to lag far behind developed Western states in utilization rates of therapeutic CVD interventions with roughly 1.57 procedures per million of population performed in 2015 for APAC region versus about 13.4 and 12.3 CVD interventions done per million of population in the U.S. and largest Western European countries.

Source: MedMarket Diligence, LLC; “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022,” (Report #C500).


Global Cardiovascular Procedures report #C500 details the current and projected surgical and interventional therapeutic procedures commonly used in the management of acute and chronic conditions affecting myocardium and vascular system.

Interventional and Surgical Cardiovascular Procedure Volumes

Cardiovascular diseases (CVDs) are a variety of acute and chronic medical conditions associated with an inability of the cardiovascular system to sustain an adequate blood flow and supply of oxygen and nutrients to organs and tissues of the body. The CVD conditions may be manifested by the obstruction or deformation of arterial and venous pathways, distortion in the electrical conducting and pacing activity of the heart, and impaired pumping function of the heart muscle, or some combination of circulatory, cardiac rhythm, and myocardial disorders.

These diseases are treated via the following surgical and interventional procedures:

  • Coronary artery bypass graft (CABG) surgery;
  • Coronary angioplasty and stenting;
  • Lower extremity arterial bypass surgery;
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting;
  • Peripheral drug-coated balloon angioplasty;
  • Peripheral atherectomy;
  • Surgical and endovascular aortic aneurysm repair;
  • Vena cava filter placement
  • Endovenous ablation;
  • Mechanical venous thrombectomy;
  • Venous angioplasty and stenting;
  • Carotid endarterectomy;
  • Carotid artery stenting;
  • Cerebral thrombectomy;
  • Cerebral aneurysm and AVM surgical clipping;
  • Cerebral aneurysm and AVM coiling & flow diversion;
  • Left Atrial Appendage closure;
  • Heart valve repair and replacement surgery;
  • Transcatheter valve repair and replacement;
  • Congenital heart defect repair;
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices;
  • Pacemaker implantation;
  • Implantable cardioverter defibrillator placement;
  • Cardiac resynchronization therapy device placement;
  • Standard SVT & VT ablation; and
  • Transcatheter AFib ablation

In 2016, the cumulative worldwide volume of these procedures is projected to approach 15.05 million surgical and transcatheter interventions. This will include:

  • roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

Below is illustrated the overall global growth for each of the major categories of procedures through 2022.

Source: MedMarket Diligence, LLC; Report #C500.  (Full report available online.)

There is considerable variation in the growth of cardiovascular procedures globally, but most growth is coming out of Asia/Pacific. For example, within the area of venous interventions, the growth in the use of endovenous ablation for chronic venous insufficiency is markedly higher in Asia/Pacific than in other regions, though the U.S. will remain the largest volume of these procedures.

Source: MedMarket Diligence, LLC; Report #C500.  (Full report available online.)


“Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022” (Report #C500), published August 2016. See description, table of contents, list of exhibits at link. Available for purchase and download from link.

Coronary revascularization options evolve

The number of options that are in use or development for coronary revascularization or other treatment for ischemic heart disease is extraordinary. Given the mortality associated with coronary artery disease, it is unsurprising that it has been the focus of so much development.

Below are the options that have evolved for treatment of ischemic heart disease, inclusive of surgical, interventional, and other medical approaches.

Coronary Revascularization and Other
Ischemic Heart Treatment Options

Source: MedMarket Diligence, LLC

See also “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”, report #C500. Order online.

Cardiovascular Surgical and Interventional Procedures Worldwide, 2015-2022

In 2016, the cumulative worldwide volume of the the following CVD procedures is projected to approach 15.05 million surgical and transcatheter interventions:

  • roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

screen-shot-2016-11-07-at-7-26-38-am

CABG: Coronary artery bypass graft; PCI: Percutaneous coronary intervention; AAA: Abdominal aortic aneurysm; TAA: Thoracic abdominal aneurysm; CVI: Chronic venous insufficiency; DVT: Deep vein thrombosis; PE: Pulmonary embolectomy.

Source: MedMarket Diligence, LLC; Report #C500, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.” (To request report excerpts, click here.)

The Evolution of Coronary Revascularization Markets

Coronary artery bypass grafting (CABG) is the most common type of cardiovascular surgical intervention, which “bypasses” acute or chronic coronary artery obstructions via a newly created vascular conduit and thus reinstate normal or sufficient blood flow to the ischemic but still viable areas of the myocardium.

The majority of CABG surgeries (up to 75%) are still performed on the fully arrested heart which is accessed via a foot-long incision over the sternum and completely separated patient’s rib cage. Following a full sternotomy, the CABG patient is typically placed on extracorporeal cardiopulmonary bypass (CPB) with a heart-lung machine, which allows the surgeon to operate on a still and bloodless field. Simultaneously, the patient’s greater saphenous vein or internal mammary artery, or both are harvested (mobilized) for use as a bypass conduit in the ongoing procedure. Depending on the location, character and number of the coronary artery occlusions, the surgery might involve between one and seven coronary bypasses.

Once the bypasses are completed, the heart is restarted and, if it functions normally, the patient is removed from the heart-lung machine and the chest is closed up, the sternum is stabilized with stainless steel wire, and the chest and leg wounds are closed with sutures or clips. Patient’s recovery from a routine uncomplicated CABG usually involves seven to ten days of hospital stay, including two to three days spent in the cardiac intensive care unit.

Less Invasive CABG

Over the past decade, several less-invasive versions of the CABG were developed with the view of reducing morbidity and potentially serious complications associated with extensive surgical trauma and the use of aortic clamping and CPB. The current arsenal of less-invasive coronary artery bypass techniques includes minimally-invasive direct CABG (MIDCAB), full-sternotomy “off-pump” CABG (OPCAB), port-access CABG (P-CAB) with peripheral cannulation and endoclamping of aorta, and endoscopic computer (robotics)-assisted CABG (C-CAB).

Designed to limit surgical trauma of conventional CABG, the MIDCAB procedure is best suited for patients with occluding lesions either in the left anterior descending (LAD) artery, or the right coronary artery (RCA). In contrast to conventional CABG, it is performed on a beating heart without the use of CPB. In MIDCAB surgery, access to targeted arteries is achieved through a limited left anterior thoracotomy in the case of occluded LAD, and right thoracotomy or limited lateral thoracotomy in cases involving diseased proximal RCA or circumflex artery. Because of the smaller surgical trauma and off-pump performance (without aorta clamping), the MIDCAB procedure typically results in fewer complications, lower morbidity and shorter hospital stays compared to conventional CABG. However, its utility is limited to a subset of patients with one or two coronary vascular targets, which constitute a small fraction (<3%) of the total caseloads referred for CABG.

The OPCAB procedure is performed on a beating heart after reduction of cardiac motion with a variety of pharmacological and mechanical devices. These include slowing the heart rate with ß-blockers and calcium channel blockers and the use of special mechanical devices intended to stabilize the myocardium and mobilize target vessels. The use of various retraction techniques allows to gain access to vessels on the lateral and inferior surfaces of the heart. Because the OPCAB technique also involves surgical access via median sternotomy, its primary benefit is the avoidance of complications resulting from the use of cardiopulmonary bypass, not surgical trauma.

Over the past decade, the OPCAB surgery emerged as the most popular form of less-invasive coronary artery bypass procedures in the U.S, and Western Europe. By the beginning of this decade, an estimated 25% of all CABGs performed in these geographies were done without the use of CPB. However, in recent years, the relative usage of OPCAB techniques remained largely unchanged. In the view of many cardiac surgeons, the latter was predicated by the increasing morphological complexity of cases referred for CABG (rather than PCI) and generally superior immediate and longer-term bypass graft patency and patient outcomes obtainable with technically less-demanding on-pump CABG surgery.

In contrast to that, the relative usage of “neurological complications sparing” OPCAB techniques is significantly higher in major Asia-Pacific states reaching over 60% of all CABG procedures in China, India, and Japan.

The rarely used P-CAB procedure involves the use of cardiopulmonary bypass and cardioplegia of a globally arrested heart. Vascular access for CPB is achieved via the femoral artery and vein. Compared to the MIDCAB technique, the use of multiple ports allow access to different areas of the heart, thus facilitating more complete revascularization, and the motionless heart may allow a more accurate and reliable anastomosis. In distinction from conventional CABG, median sternotomy is avoided, which reduces trauma and complications. However, potential morbidity of the port-access operation includes multiple wounds at port sites, the limited thoracotomy, and the groin dissection for femoral-femoral bypass. The procedure is also technically difficult and time consuming and therefore has not achieved widespread popularity.

The Hybrid CABG-PCI procedure combines the use of surgical bypass (typically MIDCAB) and percutaneous coronary interventional techniques (angioplasty and stenting) for optimal management of multi-vessel coronary occlusions in high risk patients. The main rationale behind the utilization of hybrid procedure is to achieve maximally possible myocardial revascularization with minimally possible trauma and reduced probability of post-procedural complications. The most common variation of the hybrid revascularization involves MIDCAB-based radial anastomosis between the left anterior descending artery and left internal thoracic artery accompanied by the PTCA/stenting-based recanalization of less critical coronary artery occlusions.

CABG Utilization Trends and Procedure Volumes

Since the advent of coronary angioplasty in the late 1970s, the relative role and share of CABG procedures in myocardial revascularization have been steadily declining due to a continuing penetration of treated patient caseloads by a less invasive PTCA. This general trend was further expedited by the advent of coronary stents. At the very end of the past decade, the rate of transition towards percutaneous coronary interventions in myocardial revascularization started tapering off, primarily due to growing maturity of PTCA/stenting technology and nearly full coverage of patient caseloads with one- or uncomplicated two-vessel disease amendable through angioplasty and stenting. At the same time, a growing popularity of the less-invasive CABG regimens resulted in some additional influx into CABG caseloads from a no-option patient cohort. A less-invasive surgical coronary bypass also emerged as a preferred treatment option for some gray-area patients that were previously referred for sub-optimal PTCA and stenting to avoid potential complications of conventional CABG.

In 2006 – for the first time in about two decades – the U.S. and European volumes of CABG procedures experienced a visible increase, which was repeated in 2007 and reproduced on a smaller and diminishing scale in the following two years.

The cited unexpected reversal of a long established downward procedural trend reflected an acute (and, probably, somewhat overblown) end-users’ concern about long-term safety (AMI-prone late thrombosis) of drug-eluting stents (DES), which prompted a steep decline in utilization of DES in 2006, 2007, followed by a smaller and tapering decreases in 2008 and 2009 with corresponding migration of advanced CHD patients referred for radical intervention to bare metal stenting and CABG surgery.

In 2010 – 2015 the volume of CABG surgeries remained relatively unchanged, notwithstanding a visible decline in percutaneous coronary interventions and overall myocardial revascularization procedures.

In the forthcoming years, the cumulative global volume of CABG procedures is unlikely to experience any significant changes, while their relative share in coronary revascularization can be expected to decline from about 15.4% in 2015 to roughly 12.3% by the end of the forecast period (2022). The cited assertion is based on the expectation of eventual stabilization and renewal of nominal growth in utilization of PCI in the U.S. and Europe coupled with continuation of robust expansion in the usage of percutaneous revascularization techniques in Asia-Pacific (especially India and China, where PCI volumes were growing by 20% and 10% annually over the past half decade, according to local healthcare authorities).

In 2016, the worldwide volume of CABG surgeries leveled at approximately 702.5 thousand procedures, of which roughly 35.2% involved the use of less-invasive OPCAB techniques. During the forecast period, the global number of CABG procedures is projected to experience a nominal 0.1% average annual increase to about 705.9 corresponding surgical interventions in the year 2022. Within the same time frame, the relative share of less-invasive bypass surgeries is expected to register modest gains expanding to approximately 36.7% of the total in 2022.

Coronary Revascularization Procedures, 2015-2022 
(Figures in thousands)

screen-shot-2016-11-02-at-11-17-58-am
CABG and Primary PCI in Coronary Revascularization to 2022.

In, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”, Report #C500, we forecast cardiovascular procedure utilization, caseload, technology trends, and device market impacts, for the U.S., Western Europe, Asia/Pacific, and Rest of World.

Coronary and venous interventions show inevitable Asia/Pacific dominance

Coronary revascularization, whether by bypass graft or percutaneous coronary intervention, drives an enormous amount of medtech business. Angioplasty catheters, guidewires, and the plethora of devices in cardiothoracic surgery represent many millions in sales annually. Manufacturers pursuing growth in these areas will see big, but slowing growth rates in the U.S., while markets in Asia/Pacific reflect the growing demand for cardio technologies. Already, these markets are surpassing western markets:

screen-shot-2016-10-03-at-2-20-47-pm

Source: Report #C500.

While coronary applications have a long history, venous interventions have less, and procedure data shows that patient populations have not been fully tapped in any geographic region. Already, Asia/Pacific markets would appear to be on course to eclipse western markets, but not until after 2022, and will eclipse Western Europe markets before challenging the U.S.

screen-shot-2016-10-03-at-2-20-38-pm

Source: Report #C500.

Coronary and Peripheral Vascular Dominate Global Cardiovascular Procedure Volumes

In 2016, the cumulative worldwide volume of the cardiovascular device procedures is projected to approach 15.05 million surgical and transcatheter interventions. This will include:

  • roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

screen-shot-2016-09-28-at-11-05-28-am

Source: Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.