Category Archives: China

Country and regional forecasts for surgical sealants and glues, 2013-2018

The largest current and future market for surgical sealants and glues (at least through 2018) remains the U.S. by a fairly wide margin. Second to the U.S. is the aggregate of all Asia/Pacific countries (excluding Japan and Korea), followed by Japan (the second largest single country market for sealants & glues) and then Germany. Below is the 2013 to 2018 forecast of surgical sealants and glues, by country/region, sorted by current market size.
Screen Shot 2014-10-29 at 11.35.10 AM

Source: MedMarket Diligence, LLC; Report #S192

The U.S., Japan and Germany are well developed markets for medtech products like surgical sealants and glues; hence, their large current total sales. However, faster rates of adoption are taking place in markets that have accordingly not been penetrated to the same degree, and this becomes particularly significant for the very large current markets of the Asia/Pacific region (India and China in particular). Below is illustrated the compound annual growth rate (2013-2018) for sales of surgical sealants and glues by country/region, sorted in order of growth.

Screen Shot 2014-10-29 at 11.52.53 AM

Source: MedMarket Diligence, LLC; Report #S192

Rising and fading technologies in the global market for wound closure

Technologies emerge, gain clinical acceptance, grow in caseload and become the standard of care. Then new technologies emerge, developed to improve on or eclipse established technologies. They gain acceptance and the cycle continues.

The pace of technology and market development in the products used in wound closure — sealants, glues, hemostats, sutures/staples, tape, and vascular closure devices — follow this path as characteristically as any medtech market. However, the pace of adoption varies both by technology type and geographic location. Consequently, there is a pretty wide range of compound annual growth rates in the sales of these product globally, regionally and by country.

Below illustrates the highest growth segment-geography combinations in the wound closure market. This frequently illustrates that novel technologies more rapidly penetrate well developed economies, which can sustain the initial high premium pricing of novel technologies, then progressively migrate to less well developed economies.  (For the sake of direct comparison, the high and low growth graphics are shown on the same scale.)

High Growth Segment-Geographies in Wound Closure

Screen Shot 2014-10-23 at 2.07.43 PMSource: MedMarket Diligence, LLC; Report #S192.

Low Growth Segment-Geographies in Wound Closure

Screen Shot 2014-10-23 at 2.07.52 PMSource: MedMarket Diligence, LLC; Report #S192.

The Staying Power of Spine Surgery Markets

While medtech over the past five years has seen continued pressure on prices, increased oversight on physician-manufacturer relationships, reduced med/surg procedure volumes, continued regulatory challenges and the real or perceived negative impacts of the Affordable Care Act, the business of spine surgical technologies remains one of the most steadfast oases of innovation and price stability.

The continued growth of spine surgery owes itself to a number of key drivers:

  • The ageing population worldwide
  • Increasing incidence of obesity
  • A growing middle class in developing countries, with the ability to pay out of pocket for spine surgery
  • Improving worldwide economy
  • Technological device enhancements, leading to improved surgical results
  • Developments in minimally invasive spine surgery (MISS) devices driving a strong increase in MISS, with its numerous advantages
  • In the US, improvements in reimbursement as clinical trials demonstrate the efficacy of treatments using the devices
  • US healthcare reform leading to medical insurance coverage for more people, allowing those suffering from intractable back pain to receive surgical treatment

(The last, of course, is debatable, since medical device manufacturers are not yet convinced that a 3.2% excise tax is supported by the anticipated boost in patient population. The jury is still out on this and, in any case, prospects for the 3.2% tax being repealed are slim, despite repeated efforts.)

Consequently, the worldwide aggregate spine surgery market has a 2012 to 2020 compound growth rate of 7.7%, with individual segments within it growing at a low of 2.3% to a high of 35.0%.

It is also worth noting that we have identified seven (7) new medtech startups (McGinley Orthopaedic Innovations, KB Medical, Trice Orthopedics, Tyber Medical, Direct Spinal Therapeutics, NLT Spine, Osseus Fusion Systems) in spine surgery that have been founded in the past three years alone.

Below is illustrated the spine surgery markets in the Americas and Europe for 2012-2020.

Screen Shot 2014-05-28 at 10.33.52 AMScreen Shot 2014-05-28 at 10.34.10 AM

Source: MedMarket Diligence, LLC; Report #M520, “Worldwide Spine Surgery: Products, Technologies, Markets and Opportunities 2010-2020″.

Established to emerging, commodity to advanced in wound management

Wound management is about as diverse a market as there can be in medtech. Wounds can be acute or chronic, surgically created or arising from trauma or disease, treated with technology as simple as a piece of gauze or as complex as a hyperbaric oxygen chamber or negative pressure would therapy technology.  The manufacturers range from producers of largely commodity-like dressings to devices to equipment to growth factors and other biotech products.

Simultaneously, the nature of patient populations, clinical practices, market development, economics and technology adoption vary widely around the world, resulting in considerable variation in the sales of traditional products all the way up through the most advanced products in wound management.

As an example, below are illustrations of the 2011 to 2020 forecast for the range of wound management products in the U.S. and a different set of markets, the Rest of Asia/Pacific (excluding Japan and Korea); predominantly China, India and Australia.

The distribution of product sales in wound management, on a relative basis, is very different in the U.S. than in the Rest of Asia/Pacific due in large part to the tendency for advanced technologies to be first introduced in well developed markets, like the U.S., Europe, Japan and others and later migrated to the “emerging” markets. T

The U.S. graph illustrates the decreasing/increasing share of each technology’s sales relative to all others.

Screen Shot 2014-05-20 at 3.23.43 PM

Source: MedMarket Diligence, LLC; Report #S249

For the Rest of Asia/Pacific Market, a different picture emerges, with interesting variations per product segment.

 

 

Screen Shot 2014-05-20 at 3.23.58 PM

Source: MedMarket Diligence, LLC; Report #S249

However, to put the relative differences into a meaningful context, one has to look at the absolute sales in the different markets. And, to show the very real, stark difference between the U.S. and Rest of Asia/Pacific markets for wound management products, we have plotted both on the same scale, with the max given for both as $12,000 million in sales.

 

 

Screen Shot 2014-05-20 at 3.24.16 PM

Source: MedMarket Diligence, LLC; Report #S249

Screen Shot 2014-05-20 at 3.29.56 PM

Source: MedMarket Diligence, LLC; Report #S249

Tissue Engineering and Cell Therapy Market Outlook

The market for tissue engineering and cell therapy products is set to grow to nearly $32 billion by 2018. This figure includes bioengineered products that are themselves cells or are actively stimulating cell growth or regeneration, products that often represent a combination of biotechnology, medical device and pharmaceutical technologies. The largest segment in the overall market for regenerative medicine technologies and products comprises orthopedic applications. Other key sectors are cardiac and vascular disease, neurological diseases, diabetes, inflammatory diseases and dental decay and injury.

An overview (map) of the spectrum of clinical applications in tissue engineering and cell therapy is shown below:

Source: Report #S520

Cell therapy is defined as a process whereby new cells are introduced into tissue as a method of treating disease; the process may or may not include gene therapy. Forms of cell therapy can include: transplantation of autologous (from the patient) or allogeneic (from a donor) stem cells , transplantation of mature, functional cells, application of modified human cells used to produce a needed substance, xenotransplantation of non-human cells used to produce a needed substance, and transplantation of transdifferentiated cells derived from the patient’s differentiated cells.

Once considered a segment of biomaterial technologies, tissue engineering has evolved into its own category and now comprises a combination of cells, engineering and suitable biochemical and physiochemical factors to improve or replace biological functions. These include ways to repair or replace human tissue with applications in nearly every medical specialty. Regenerative medicine is often synonymous with tissue engineering but usually focuses on the use of stem cells.

Tissue engineering and cell therapy may be considered comprised of bioengineered products that are themselves cells or are actively stimulating cell growth or regeneration. These often comprise a combination of biotechnology, medical device and pharmaceutical technologies.

Researchers have been examining tissue engineering and cell therapy for roughly 30 years. While some products in some specialties (such as wound care) have reached market, many others are still in research and development stages. In recent years, large pharmaceutical and medical device companies have provided funding for smaller biotech companies in the hopes that some of these products and therapies will achieve a highly profitable, commercial status. In addition, some companies have been acquired by larger medical device and pharmaceutical companies looking to bring these technologies under their corporate umbrellas. Many of the remaining smaller companies received millions of privately funded dollars per year in research and development. In many cases it takes at least ten years to bring a product to the point where human clinical trials may be conducted. Because of the large amounts of capital to achieve this, several companies have presented promising technologies only to close their doors and/or sell the technology to a larger company due to lack of funds.

The goal of stem cell research is to develop therapies to treat human disease through methods other than medication. Key aspects of this research are to examine basic mechanisms of the cell cycle (including the expression of genes during the formation of embryos) as well as specialization and differentiation into human tissue, how and when the differentiation takes place and how differentiated cells may be coaxed to differentiate into a specific type of cell. In the differentiation process, stem cells are signaled to become a specific, specialized type of cell when internal signals controlled by a cell’s genes are interspersed across long strands of DNA and carry coded instructions for all the structures and functions of a cell. In addition, cell differentiation may be caused externally by use of chemicals secreted by other cells, physical contact with neighboring cells and certain molecules in the microenvironment.

The end goal of stem cell research is to develop therapies that will allow the repair or reversal of diseases that previously were largely untreatable or incurable.. These therapies include treatment of neurological conditions such as Alzheimer’s and Parkinson’s, repair or replacement of damaged organs such as the heart or liver, the growth of implants from autologous cells, and even regeneration of lost digits or limbs.

In a developing human embryo, a specific layer of cells normally become precursor cells to cells found only in the central nervous system or the digestive system or the skin, depending on the cell layer and the elements of the embryo that direct cell differentiation. Once differentiated, many of these cells can only become one kind of cell. However, researchers have discovered that adult body cells exist that are either stem cells or can be coaxed to become stem cells that have the ability to become virtually any type of human cell, thus paving the way to engineer adult stem cell that can bring about repair or regeneration of tissues or the reversal of previously incurable diseases.

Another unique characteristic of stem cells is that they are capable of self-division and self-renewal over long periods of time. Unlike muscle, blood or nerve cells, stem cells can proliferate many times. When exposed to ideal conditions in the laboratory, a relatively small sample of stem cells can eventually yield millions of cells.

There are five primary types of stem cells: totipotent early embryonic cells (which can differentiate into any kind of human cell); pluripotent blastocyst embryonic stem cells, which are found in an embryo seven days after fertilization and can become almost any kind of cell in the body; fetal stem cells, which appear after the eighth week of development; multipotent umbilical cord stem cells, which can only differentiate into a limited number of cell types; and unspecialized adult stem cells, which exist in already developed tissue (commonly nerves, blood, skin, bone and muscle) of any person after birth.

tissue-cell-2012-2018

Source: MedMarket Diligence, LLC; Report #S520, “Tissue Engineering & Cell Therapy Worldwide 2009-2018.”

Developmental Timescales

Tissue engineering and cellular therapy products take years of research and many millions of dollars (averaging about $300 million, according to some reports) before they make it over the hurdles of clinical trials and into actual market launch. More than one small biotech company has burned through its money too quickly and been unable to attract enough investment to keep the doors open. The large pharmaceutical and medical device companies are watching development carefully, and have frequently made deals or entered into alliances with the biotechs, but they have learned to be cautious about footing the bill for development of a product that, in the end, may never sell.

For many of the products in development, product launch is likely to occur within five years. Exceptions include skin and certain bone and cartilage products, which are already on the market. Other products are likely to appear on the European market before launch in the United States, due to the presence of (so far) less stringent product review and approval laws in the European Union.

Even when the products are launched, take-up will be far from 100% of all patients with that particular condition. Initially, tissue engineering and cell therapy products will go to patients suffering from cancers and other life-threatening conditions, who, for example, are unable to wait any longer for a donor organ. Patients who seem to be near the end of their natural lives likely will not receive these treatments. Insurance coverage will certainly play a key role as well in the decision about who receives which treatments and when. But most importantly, physicians will be selecting who among their patients will be treated; the physicians learn about the treatments by using them, by observing the patient’s reactions, and by discussing their experiences with colleagues. In other words, the application of tissue engineering and cellular therapy will progress in a manner similar to the introduction of any new technology: through generally conservative usage by skilled, highly trained physicians dedicated to providing their patients with the best possible treatment without causing them additional harm.

 

Posted via email from medmarket’s posterous

Factors Affecting Wound Market Growth Rates

Gauze dressings, bioengineered skin, alginates, negative pressure devices, cellular growth factors, hydrogels, antimicrobial dressings — all of these products (and more) represent the practice of wound management for the entire spectrum of wound types and severities.

Practice patterns, regulatory requirements, price pressures, healthcare delivery system gatekeepers, demographics, cultural sensitivities — all of these represent a sampling of the different forces that dictate the size and outlook of the markets for different wound management products in global markets.

Screen Shot 2014-05-13 at 9.20.35 AM

It’s no surprise, then, that product sales are growing (or declining) at different rates in different regions of the world, but the data is clear on this. MedMarket Diligence researched and published this data in its global wound management market Report #S249, which details the clinical practice of wound management, the products on the market and in development, the current and forecast markets for each worldwide and regionally and the competitors vying for market presence now and in the future.  Research from primary and secondary sources, the global wound market data illustrated above (which is also detailed by country) and presented in Report #S249 is a compelling read for market participants.

Applications, global markets in tissue engineering and cell therapy

Screen Shot 2014-04-17 at 7.37.44 AMThe market for tissue engineering and cell therapy products is set to grow from a respectable $8.3 billion in 2010 to nearly $32 billion by 2018. This figure includes bioengineered products that are themselves cells or are actively stimulating cell growth or regeneration, products that often represent a combination of biotechnology, medical device and pharmaceutical technologies. The largest segment in the overall market for regenerative medicine technologies and products comprises orthopedic applications. Other key sectors are cardiac and vascular disease, neurological diseases, diabetes, inflammatory diseases and dental decay and injury.

Cell-tissue-applications

Factors that are expected to influence this market and its explosive growth include political forces, government funding, clinical trial results, industry investments (or lack thereof), and an increasing awareness among both physicians and the general public of the accessibility of cell therapies for medical applications. Changes in the U.S. government’s federal funding of embryonic stem cell research has given a potentially critical mass of researchers increased access to additional lines of embryonic stem cells. This is expected to result in an increase in the number of research projects being conducted and thus possibly hasten the commercialization of certain products.

regional-forecast

Source: Report #S520, “Tissue Engineering, Cell Therapy and Transplantation: Products, Technologies & Market Opportunities, Worldwide, 2009-2018.”

Another factor that has influenced the advancement of regenerative technologies is found in China, where the Chinese government has encouraged and sponsored cutting-edge (and some have complained ethically questionable) research. While China’s Ministry of Health has since (in May 2009) established a policy requiring proof of safety and efficacy studies for all gene and stem cell therapies, the fact remains that this research in China has spurred the advancement of (or at least awareness of) newer applications and capabilities of gene and stem cell therapy in medicine.

Meanwhile, stricter regulations in other areas of Asia (particularly Japan) will serve to temper the overall growth of commercialized tissue and cell therapy–based products in that region. Nonetheless, the growth rate in the Asia/Pacific region is expected to be a very robust 20% annually.


MedMarket Diligence’s Report #S520 remains the most comprehensive and credible study of the current and project market for products and technologies in cell therapy and tissue engineering.