Top Cardiovascular Surgical and Interventional Procedures, Projected to 2022

Below, after the categories of cardiovascular procedures, are the comprehensive listings of the surgical and interventional procedures in the management of cardiovascular disease represented in the MedMarket Diligence Report #C500, which also analyzes the clinical practice patterns, trends, and the impact on medical device sales and the impact of new medical device introductions during the forecast period, addressing each major area of surgical and interventional cardiovascular medicine:

Surgical and Interventional Procedures Covered:

  • Coronary artery bypass graft (CABG) surgery
  • Coronary angioplasty and stenting
  • Lower extremity arterial bypass surgery
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting
  • Peripheral drug-coated balloon angioplasty
  • Peripheral atherectomy
  • Surgical and endovascular aortic aneurysm repair
  • Vena cava filter placement
  • Endovenous ablation
  • Mechanical venous thrombectomy
  • Venous angioplasty and stenting
  • Carotid endarterectomy
  • Carotid artery stenting
  • Cerebral thrombectomy
  • Cerebral aneurysm and AVM surgical clipping
  • Cerebral aneurysm and AVM coiling & flow diversion
  • Left Atrial Appendage closure
  • Heart valve repair and replacement surgery
  • Transcatheter valve repair and replacement
  • Congenital heart defect repair
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices
  • Pacemaker implantation
  • Implantable cardioverter defibrillator placement
  • Cardiac resynchronization therapy device placement
  • Standard SVT & VT ablation
  • Transcatheter AFib ablation

We have sorted procedures first by growth (CAGR) to 2022, then by volume in 2022.

CV Procedures by Growth

Source: MedMarket Diligence, LLC; Report #C500.

CV Procedures by Volume

Source: MedMarket Diligence, LLC; Report #C500.

Cardiovascular Surgical Procedures, Technologies Trended Globally to 2022

cardiovascular procedures

Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022. See Report #C500.

Publishing July 2016

This report covers surgical and interventional therapeutic procedures commonly used in the management of acute and chronic conditions affecting myocardium and vascular system. The latter include ischemic heart disease (and its life threatening manifestations like AMI, cardiogenic shock, etc.); heart failure; structural heart disorders (valvular abnormalities and congenital heart defects); peripheral artery disease (and limb and life threatening critical limb ischemia); aortic disorders (AAA, TAA and aortic dissections); acute and chronic venous conditions (such as deep venous thrombosis, pulmonary embolism and chronic venous insufficiency); neurovascular pathologies associated with high risk of hemorrhagic and ischemic stroke (such as cerebral aneurysms and AVMs, and high-grade carotid/intracranial stenosis); and cardiac rhythm disorders (requiring correction with implantable pulse generators/IPG or arrhythmia ablation).

The report offers current assessment and projected procedural dynamics (2015 to 2022) for primary market geographies (e.g., United States, Largest Western European Countries, and Major Asian States) as well as the rest-of-the-world.

See the complete table of contents at Report C500.

 

 

Abbott’s fully-absorbing stent gets FDA nod

AbsorbOUS-heroAbbott’s resorbable coronary stent, Absorb, gained FDA regulatory approval today, the first for a fully-dissolving coronary stent. Designed to be fully resorbed by the body within three years of implantation, the device is intended to achieve the endpoint of a more natural vasculature than can be achieved with metal stents.


In July 2016, MedMarket Diligence is publishing, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”, Report #C500.

Where is the medtech growth?

Medical technology is, for many of its markets, being forced to look for growth from more sources, including emerging markets. Manufacturers are able to gain better margins through innovation, but their success varies by clinical application.

Cardiology. A demanding patient base (it’s life or death). Be that as it may, there are few new or untapped markets, only the opportunity for new technologies to displace existing markets. Interventional technologies are progressively enabling treatment of larger patient populations, but much growth will still be from emerging markets.

Wound management. Even the most well-established markets will see growth from innovation. The wound market just needs less growth to be happy, since small percentage growth becomes very large by volume. And yet, some of the most significant growth in the long run will be for more advanced

Surgery. Every aspect of surgery seems to be subject to attempts to improve upon it. Robotics, endoscopy, transcatheter, single-port, incisionless, natural orifice. Interventional options are increasing the treatable patient population, and it seems likely that continued development (e.g., materials, including biodegradables, use of drug or other coatings, including cells) will yield more routine procedures for more and different types of conditions, many of which have been inadequately served, if it all.

Orthopedics. Aging populations demanding more agility and mobility will drive orthopedic procedures and device use. Innovation still represents some upside, but more from 3D printing than other new technologies being introduced to practice.

Tissue/Cell Therapy. This is a technology opportunity (and represents radical innovation for most clinical areas), but it is also a set of target clinical applications, since tissues/cells are being engineered to address tissue or cell trauma or disease. Growth is displacing existing markets with new technology, such as bioengineered skin, tendons, bladders, bone, cardiac tissue, etc. These are fundamentally radical technologies for the target applications.

Below is my conceptual opinion on the balance of growth by clinical area coming from routine innovation (tweaks, improvements), radical innovation (whole new “paradigms” like cell therapy in cardiology), and emerging market growth (e.g., China, S. America).

Screen Shot 2016-06-22 at 1.56.13 PM

Source: MedMarket Diligence, LLC, opinion!

Medtech midterm; Cardiovascular procedures; Wound shifts; Fundings

d5472bf8-1237-4ecc-a976-28a1b2fc7f3f.jpg

advanced medical technologies

A weekly(ish) newsletter to our blog subscribers.
From MedMarket Diligence, LLC
(Make note of this code: “Optinthirtyoff”)

From “Medtech is Dead. Long Live Medtech“, here is some of what we can expect in the next 5-10 years in medtech:

  • Type 1 diabetes gradually becomes less burdensome, with fewer complications, and improved quality of life for patients.
  • Type 2 diabetes continues to plague Western markets in particular, despite advances in diagnosis, treatment, and monitoring due to challenges in patient compliance.
  • Cancer five year survival rates will dramatically increase for many cancers. The number of hits on Google searches for “cure AND cancer” will reflect this.
  • Multifaceted approaches available for treatment of traumatic brain injury and spinal cord injury – encompassing exoskeletons to help retrain/rehabilitate and increase functional mobility, nerve grafting, cell/tissue therapy, and others.
  • Organ/device hybrids will proliferate and become viable alternatives to transplant, or bridge-to-transplant, for pulmonary assist, kidney, liver, heart, pancreas and other organ.
  • Stem cells have had dramatic success, and the science will have improved, but challenges remain, especially since the excitement around stem and other pluripotent cells has created a climate not far removed from the wild west – the potential of such open territory being up for grabs has drawn hordes of activity, not all in the best interests of patients or shareholders. But in this time frame, specific treatments will likely have become standards of care for some diseases, while the challenge and opportunity remain for many others.
From “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”.

Cardiovascular Surgical and Interventional Procedures

  • Coronary Artery Bypass Graft Surgery
  • Coronary Mechanical and Laser Atherectomy
  • Coronary Angioplasty and Stenting
  • Mechanical Thrombectomy
  • Ventricular Assist Device Placement
  • Total Artificial Heart
  • Donor Heart Transplantation
  • Lower Extremity Arterial Bypass Surgery
  • Percutaneous Transluminal Angioplasty (PTA) and Bare Metal Stenting
  • PTA and Drug-Eluting Stenting
  • PTA with Drug-Eluting Balloons
  • Mechanical and Laser Atherectomy
  • Catheter-Directed Thrombolysis and Thrombectomy
  • Surgical and Endovascular Thoracic Aortic Aneurysm Repair
  • Surgical and Endovascular Abdominal Aortic Aneurysm Repair
  • Vena Cava Filter Placement
  • Endovenous Ablation
  • Venous Revascularization
  • Carotid Endarterectomy
  • Carotid Artery Stenting
  • Cerebral Thrombectomy
  • Cerebral Aneurysm and Arteriovenous Malformation (AVM) repair
  • Congenital Heart Defect Repair
  • Heart Valve Repair and Replacement Surgery
  • Transcatheter Valve Repair and Replacement
  • Pacemaker Implantation
  • Implantable Cardioverter Defibrillator Placement
  • Cardiac Resynchronization Therapy Device Placement
  • Standard SVT Ablation
  • Surgical AFIb Ablation
  • Transcatheter AFib Ablation

See Report #C500, publishing June 2016.

From “Worldwide Wound Management, Forecast to 2024”, Report #S251, published December 2015

e40a6a3f-1b21-40de-98ba-3467c5698825.png
Source: Report #S251.

Selected Medtech Fundings, May 2016

7114c77d-d736-44de-89c4-cc3b76f8c6b8.png
Source: Compiled by MedMarket Diligence, LLC

During the month of June 2016, our opt-in blog readers are eligible for 30% off any MedMarket Diligence report (not valid with other offers). To take advantage of this, order any report from an online link at mediligence.com (or go to store) and, at checkout, enter the coupon code “Optinthirtyoff” to save 30%.

Pending Reports from MedMarket Diligence:

  • Global Nanomedical Technologies, Markets and Opportunities, 2016-2021. Details.
  • Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022. Details.
  • Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022. Details.

Patrick Driscoll
(patrick)
MedMarket Diligence

Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022

Publishing June 2016:
Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022

This is a global report from MedMarket Diligence detailing from 2015 to 2022 the volume of interventional and surgical cardiovascular procedures, including open heart, peripheral vascular, cerebrovascular and all associated endovascular interventions.

Table of Contents

Executive Summary

Section 1: Common Acute and Chronic Cardiovascular Conditions Targeted by Surgical and Transcatheter Interventions

1.1     Ischemic Heart Disease

1.1.1     Angina Pectoris
1.1.2     Acute Myocardial Infarction
1.1.3     Incidence, Prevalence, Established Treatment Modalities

1.2     Heart Failure

1.2.1     Incidence, Prevalence, Established Treatment Modalities

1.3     Peripheral Artery Disease

1.3.1     Critical Limb Ischemia
1.3.2     Incidence, Prevalence, Established Treatment Modalities
1.3.3     Aortic Aneurysm
1.3.4     Incidence, Prevalence, Established Treatment Modalities

1.4     Peripheral Venous Disorders

1.4.1     Deep Venous Thrombosis and Pulmonary Embolism
1.4.2     Chronic Venous Insufficiency and Varicose Veins
1.4.3     Incidence, Prevalence, Established Treatment Modalities

1.5     Cerebrovascular Disorders

1.5.1     Cerebrovascular Occlusions and Acute Ischemic Stroke
1.5.2     Cerebral Aneurysm & AVM and Hemorrhagic Stroke
1.5.3     Incidence, Prevalence, Established Treatment Modalities

1.6     Structural Heart Disorders

1.6.1     Congenital Heart Defects

1.6.1.1     Incidence, Prevalence, Established Treatment Modalities

1.6.2     Valvular Disorders

1.6.2.1     Incidence, Prevalence, Established Treatment Modalities

1.7     Cardiac Rhythm Disorders

1.7.1     Bradycardia
1.7.2     Tachycardia

1.7.2.1     Atrial Fibrillation

1.7.3     Incidence, Prevalence, Established Treatment Modalities

Section 2: Current and Projected Volumes of Therapeutic Interventional and Surgical Cardiovascular Procedures

2.1    Coronary Artery Revascularization

2.1.1    Coronary Artery Bypass Graft Surgery

2.1.1.1    Utilization Trends and Procedure Volumes

2.1.2    Percutaneous Coronary Interventions

2.1.2.1    Coronary Angioplasty and Stenting

2.1.2.1.1 Utilization Trends and Procedure Volumes

2.1.2.2    CoronaryMechanical and Laser Atherectomy

2.1.2.2.1 Utilization Trends and Procedure Volumes

2.1.2.3    Mechanical Thrombectomy

2.1.2.3.1 Utilization Trends and Procedure Volumes

2.2    Acute and Chronic Heart Failure Management

2.2.1    Ventricular Assist Device Placement

2.2.1.1    Utilization Trends and Procedure Volumes

2.2.2    Total Artificial Heart Implantation

2.2.2.1    Utilization Trends and Procedure Volumes

2.2.3    Donor Heart Transplantation

2.2.3.1    Utilization Trends and Procedure Volumes

2.3    Peripheral Artery Revascularization

2.3.1    Lower Extremity Arterial Bypass Surgery

2.3.1.1    Utilization Trends and Procedure Volumes

2.3.2     Percutaneous Transcatheter Interventions

2.3.2.1    Angioplasty and Stenting

2.3.2.1.1 PTA and Bare Metal Stenting
2.3.2.1.2 PTA and Drug-Eluting Stenting
2.3.2.1.3 PTA with Drug-Coated Balloons
2.3.2.1.4 Utilization Trends and Procedure Volumes

2.3.2.2    Mechanical and Laser Atherectomy

2.3.2.2.1 Utilization Trends and Procedure Volumes

2.3.2.3    Catheter-Directed Thrombolysis and Thrombectomy

2.3.2.3.1 Utilization Trends and Procedure Volumes

2.4    Aortic Aneurysm Repair

2.4.1    Surgical AAA and TAA Repair
2.4.2    Endovascular AAA and TAA Repaire
2.4.3    Utilization Trends and Procedure Volumes

2.5    DVT and CVI Management

2.5.1    Vena Cava Filter Placement

2.5.1.1    Utilization Trends and Procedure Volumes

2.5.2    Endovenous Ablation

2.5.2.1    Utilization Trends and Procedure Volumes

2.5.3    Venous Revascularization

2.5.3.1    Mechanical Thrombectomy
2.5.3.2    Venous Angioplasty and Stenting
2.5.3.2     Utilization Trends and Procedure Volumes

2.6    Acute Stroke Prophylaxis and Treatment

2.6.1    Carotid Artery Stenosis Management

2.6.1.1    Carotid Endarterectomy
2.6.1.2    Carotid Artery Stenting
2.6.1.3    Utilization Trends and Procedure Volumes

2.6.2    Cerebral Thrombectomy

2.6.2.1    Utilization Trends and Procedure Volumes

2.6.3    Cerebral Aneurysm and AVM Repair

2.6.3.1    Cerebral Aneurysm and AVM Surgical Clipping
2.6.3.2    Cerebral Aneurysm and AVM Coiling & Flow Diversion
2.6.3.3    Utilization Trends and Procedure Volumes

2.7    Treatment of Structural Heart Disorders

2.7.1     Congenital Heart Defect Repair

2.7.1.1    Utilization Trends and Procedure Volumes

2.7.2    Heart Valve Repair and Replacement

2.7.2.1    Heart Valve Repair and Replacement Surgery
2.7.2.2    Utilization Trends and Procedure Volumes
2.7.2.3    Transcatheter Valve Repair and Replacement
2.7.2.4    Utilization Trends and Procedure Volumes

2.8    Cardiac Rhythm Management

2.8.1    Implantable Pulse Generator-Based Therapy

2.8.1.1    Pacemaker Implantation
2.8.1.2    Implantable Cardioverter Defibrillator Placement
2.8.1.3    Cardiac Resynchronization Therapy Device Placement
2.8.1.4    Utilization Trends and Procedure Volumes

2.8.2    Arrhythmia Ablation Therapy

2.8.2.1    Standard SVT Ablation
2.8.2.2    Utilization Trends and Procedure Volumes
2.8.2.3    AFib Ablation

2.8.2.3.1 Surgical AFib Ablation
2.8.2.3.2 Transcatheter AFib Ablation
2.8.2.3.3 Utilization Trends and Procedure Volumes

Section 3: Country Healthcare Profiles

3.1    United States and Other Americas

3.1.1    United States
3.1.2    Brazil
3.1.3    Canada
3.1.4    Mexico

3.2    Largest West European States

3.2.1    France
3.2.2    Germany
3.2.3    Italy
3.2.4    Spain
3.2.5    United Kingdom

3.3    Major Asian States

3.3.1    China
3.3.2    India
3.3.3    Japan


Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022
June 2016
Price:  $3,950 (print or PDF; add $200 for both).  Site/Global License also available.
For immediate download, order online or fax your order form.  Site/Global License also available.

 Questions? >> reports@mediligence.com.

 

 

Wound healing factors; Growth in peripheral stenting; Nanomed applications

From our weekly email to blog subscribers…

Extrinsic Factors Affecting Wound Healing

From Report #S251, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World.”

Extrinsic factors affecting wound healing include:

Mechanical stress
Debris
Temperature
Desiccation and maceration
Infection
Chemical stress
Medications
Other factors

Mechanical stress factors include pressure, shear, and friction. Pressure can result from immobility, such as experienced by a bed- or chair-bound patient, or local pressures generated by a cast or poorly fitting shoe on a diabetic foot. When pressure is applied to an area for sufficient time and duration, blood flow to the area is compromised and healing cannot take place. Shear forces may occlude blood vessels, and disrupt or damage granulation tissue. Friction wears away newly formed epithelium or granulation tissue and may return the wound to the inflammatory phase.

Debris, such as necrotic tissue or foreign material, must be removed from the wound site in order to allow the wound to progress from the inflammatory stage to the proliferative stage of healing. Necrotic debris includes eschar and slough. The removal of necrotic tissue is called debridement and may be accomplished by mechanical, chemical, autolytic, or surgical means. Foreign material may include sutures, dressing residues, fibers shed by dressings, and foreign material which were introduced during the wounding process, such as dirt or glass.

Temperature controls the rate of chemical and enzymatic processes occurring within the wound and the metabolism of cells and tissue engaged in the repair process. Frequent dressing changes or wound cleansing with room temperature solutions may reduce wound temperature, often requiring several hours for recovery to physiological levels. Thus, wound dressings that promote a “cooling” effect, while they may help to decrease pain, may not support wound repair.

Desiccation of the wound surface removes the physiological fluids that support wound healing activity. Dry wounds are more painful, itchy, and produce scab material in an attempt to reduce fluid loss. Cell proliferation, leukocyte activity, wound contraction, and revascularization are all reduced in a dry environment. Epithelialization is drastically slowed in the presence of scab tissue that forces epithelial cells to burrow rather than freely migrate over granulation tissue. Advanced wound dressings provide protection against desiccation.

Maceration resulting from prolonged exposure to moisture may occur from incontinence, sweat accumulation, or excess exudates. Maceration can lead to enlargement of the wound, increased susceptibility to mechanical forces, and infection. Advanced wound products are designed to remove sources of moisture, manage wound exudates, and protect skin at the edges of the wound from exposure to exudates, incontinence, or perspiration.

Infection at the wound site will ensure that the healing process remains in the inflammatory phase. Pathogenic microbes in the wound compete with macrophages and fibroblasts for limited resources and may cause further necrosis in the wound bed. Serious wound infection can lead to sepsis and death. While all ulcers are considered contaminated, the diagnosis of infection is made when the wound culture demonstrates bacterial counts in excess of 105 microorganisms per gram of tissue. The clinical signs of wound infection are erythema, heat, local swelling, and pain.

Chemical stress is often applied to the wound through the use of antiseptics and cleansing agents. Routine, prolonged use of iodine, peroxide, chlorhexidine, alcohol, and acetic acid has been shown to damage cells and tissue involved in wound repair. Their use is now primarily limited to those wounds and circumstances when infection risk is high. The use of such products is rapidly discontinued in favor of using less cytotoxic agents, such as saline and nonionic surfactants.

Medication may have significant effects on the phases of wound healing. Anti-inflammatory drugs such as steroids and non-steroidal anti-inflammatory drugs may reduce the inflammatory response necessary to prepare the wound bed for granulation. Chemotherapeutic agents affect the function of normal cells as well as their target tumor tissue; their effects include reduction in the inflammatory response, suppression of protein synthesis, and inhibition of cell reproduction. Immunosuppressive drugs reduce WBC counts, reducing inflammatory activities and increasing the risk of wound infection.

Other extrinsic factors that may affect wound healing include alcohol abuse, smoking, and radiation therapy. Alcohol abuse and smoking interfere with body’s defense system, and side effects from radiation treatments include specific disruptions to the immune system, including suppression of leukocyte production that increases the risk of infection in ulcers. Radiation for treatment of cancer causes secondary complications to the skin and underlying tissue. Early signs of radiation side effects include acute inflammation, exudation, and scabbing. Later signs, which may appear four to six months after radiation, include woody, fibrous, and edematous skin. Advanced radiated skin appearances can include avascular tissue and ulcerations in the circumscribed area of the original radiation. The radiated wound may not become evident until as long as 10-20 years after the end of therapy.

Source: “Wound Management to 2024”, Report #S251.


Screen Shot 2016-05-22 at 8.35.06 PM

Source: “Global Market Opportunities in Peripheral Arterial and Venous Stents, Forecast to 2020”, Report #V201.


Selected Therapeutic and Diagnostic Applications of Nanotechnology in Medicine

Below are selected applications for neuromedical technologies in development or on the market currently.

Drug Delivery
Chemotherapy drug delivery
Magnetic nanoparticles attached to cancer cells
Nanoparticles carrying drugs to arterial wall plaques
Therapeutic magnetic carriers (TMMC) [guided using magnetic resonance navigation, or MRN]

Drugs and Therapies
Diabetes
Combatting antimicrobial resistance
Alzheimer’s Disease
Infectious Disease
Arthritis

Tissue, cell and genetic engineering involving nanomedical tools
Nanomedical tools in gene therapy for inherited diseases
Artificial kidney
ACL replacements
Ophthalmology
Implanted nanodevices for alleviation of pain

Biomaterials 

Nanomedicine and Personalized Treatments

Source: Report #T650, “Global Nanomedical Technologies, Markets and Opportunities, 2016-2021”. Report #T650.

Cerebral thrombectomy systems

Selected Cerebral Thrombectomy Systems on the U.S. and International Markets

From the 2015 report, “Emerging Global Market for Neurointerventional Technologies in Stroke, 2014-2019”.

CompanyDeviceFeaturesVessel RangeDevice Sizes (D/L)Regulatory Status
AcandisAperioSelf-expanding nitinol stent-based device with hybrid cell design and adaptable working length1.5 to 5.5 mm3.5, 4.5, 6.0 mm / 28, 30 or 40 mmCE Marked
BALTCatch+ Mini/, Catch+, Catch+ Maxi, Catch+ MegaSelf-expanding 16-wire nitinol baskets with tapering cell size design, closed distal tip and 3 distal-1 proximal radiopaque markers2.0 to 7.0 mm3.0, 4.0, 6.0, 9.0 mm / 15, 20, 30, 55 mmCE Marked
Codman /DePuyRevive SESelf-expanding nitinol basket with hybrid cell design, closed distal tip, and 3 radiopaque markers1.5 to 5.5 mm2.5, 3.0, 3.5, 4.0, 5.0, 6.0 mm / 20, 30, 40 mmCE Marked, Approved in China, South Korea, and Taiwan
CovidienSolitaire FRSelf-expanding nitinol stent-based device with Parametric design (for multiple planes of clot contact to enhance capture). Features 3 or 4 distal and 1 proximal markers2.0 to 5.5 mm4.0, 6.0 mm /26, 31, 42 mmCE Marked, FDA approved
NeuraviEmbotrapSelf-expanding nitinol stent-based device with open cell design, closed distal tip, and 3 radiopaque markers. Features dilating inner channel for rapid flow restoration and integrated distal and side branch protection2.0 to 5.5 mm3.0, 4.0, 6.0 mm / 15, 20, 30, 55 mmCE Marked
PenumbraPenumbra SystemAspiration based system comprised of vacuum pump, specialty clot capture & retrieval catheters, and Separator> 3 mm3.0, 4.0, 5.0 mm / 26 mmCE Marked, FDA approved, available in Asia, Australia, and South America
PhenoxpREsetSelf-expanding nitinol stent-based tapering device with closed ring design, and stable proximal opening2.0 to 4.0 mm4.0, 6.0 mm / 30, 45 mmCE Marked
StrykerTrevo Pro, Trevo View, Trevo XPLine of self-expanding nitinol stent-based devices (standard, all radiopaque, oversized) with spiral cell design and soft, guidewire-like closed distal tip1.5 to 4.0 mm4.0, 5.0, 6.0 mm / 20, 30, 40 mmCE Marked, FDA approved

Source: MedMarket Diligence, LLC; Report #C310.

Surgical Procedures with Potential for Sealants, Glues, Hemostats

See the published report #S290, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World”.

Sealants, glues, and hemostats must offer benefit to be adopted in clinical practice, or surgical procedures. Benefits can fall into a number of categories. These range from preventing serious complications from surgery (blood loss), improved patient outcomes (fewer complications, reduction in repeats), reductions in procedure time or other time- or cost-saving benefits, or improved aesthetic and perceived benefits. See these detailed below.

Criteria for Adjunctive Use of Hemostats, Sealants, Glues and Adhesion Prevention Products in Surgery

Screen Shot 2016-05-02 at 8.24.47 AM

Source: MedMarket Diligence, LLC; Report#S192.

We have assessed surgical sealants, glues, and hemostats for their potential in general surgery, aesthetics, neurology, urological, gastroenterology, orthopedics, and cardiovascular medicine.

Untitled-2

Source: MedMarket Diligence, LLC; Report #S192, “Worldwide Surgical Sealants, Glues, and Wound Closure Markets, 2013-2018”.


See the published report #S290, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World”.

Peripheral Arterial Disorders

Excerpt from, “Global Market Opportunities in Peripheral Arterial and Venous Stents, Forecast to 2020.” Report #V201.

Within the arterial system, a combination of arteriosclerosis and its progressing form known as atherosclerosis, or obstructive arteriopathy, represents the most common case of PVD. Arteriosclerosis is a normal consequence of aging involving gradual thickening of arterial walls and decline in the number of arterial muscle fibers. As a result, the arteries become rigid and incapable to quickly recoil following expansion or contraction. They also lose the ability to adjust their lumen and accommodate variations in the blood flow dictated by the changing oxygen needs of tissues supplied.

atherosclerosisAtherosclerosis is a pathological complication of arteriosclerosis and not a part of the normal aging experience. It involves a deposition and built-up of plaque composed of fatty substances, cholesterol, cellular waste products, calcium and fibrin (a clotting material in the blood) on the inner lining of arterial wall. In the process of plaque formation, changes also occur to the arterial intima. The trapping of lipids and other harmful matter elicits a low grade inflammatory reaction in the vessels. As these lipids accumulate, occlusion of the vessel lumen results. The artery gradually becomes calcified in the medial layer which, in turns, leads to its stiffening. These conditions interfere with the normal flow of blood through the vessel, and occasionally thrombus formation occurs, which is believed to be caused by the hemorrhage into the plaque and formation of a blood clot on its surface. Such thrombus can fragment and break off to form emboli that travel through the blood stream and often block smaller vessels.

The ultimate causes and triggering mechanisms of atherosclerosis are still to be understood, though, many researchers assume that its onset is directly related to arterial trauma and associated inflammatory processes in the arterial intima. It is also believed that blood platelets play important role in the initiation and progression of the atherosclerotic disease. Platelets are involved in the formation of prostaglandins that might do damage to arteries. They also contain a growth factor that promotes proliferation of smooth muscle cells normally present in the arterial wall. There is a general agreement among practicing clinicians that an elevated and growing platelet count represents one of the earliest and reliable signs of progressing atherosclerosis.

One popular theory asserts the connection between atherosclerosis and excess blood lipoproteins trapped within the artery wall. According to that theory, when sufficient accumulation of such lipoproteins occurs, they become oxidized. The latter presumably leads to formation of some modified lipoproteins that are rapidly taken up by smooth muscle cells. This, in turn, triggers the foam cell forming and deposits of connective tissue cells and other elements.

Still another theory under investigation is focused on possible viral or bacterial cause for atherosclerosis. The advent of this theory has been prompted by the recently found evidence of Chlamydia pneumonia infection in the diseased artery’s plaque.

Although the cited concepts of atherosclerosis seem to have some merit, they tend to suffer from one common deficiency – all of them consider the atherosclerotic disease as a localized phenomenon that is confined in time and space to some site or segment of arterial infrastructure. However, it appears more plausible that atherosclerosis constitutes a local vascular manifestation of a systemic disease, which is associated with some biomolecular and metabolic imbalances and aberrations resulting from the accumulated exposure to ecological, viral, hereditary as well as dietary and other lifestyle factors.

According to the American Heart Association, the common risk factors associated with the development of coronary (and peripheral) atherosclerosis include elevated levels of blood cholesterol (particularly, low density lipoproteins), cigarette smoking, diabetes, hypertension, obesity, physical inactivity, and family history of vascular disease.

XPbtk_hero
Abbott Vascular

Due to largely asymptomatic character of early peripheral atherosclerosis (intermittent claudication, which serves as a primary reason for consulting with a physician, typically occurs in advanced stage of the disease) the available epidemiological data on this vascular disorder are arbitrary and inconclusive. The American Heart Association in its official guidelines on the management of peripheral atherosclerosis states that it afflicts about 5% of all men and 2% of all women aged 50 or older – which adds up to roughly 4.0 million patient caseloads. At the same time, other AHA publications assert that peripheral arterial disorders accompany at least 50% cases of the coronary artery disease and are being discovered in about the same share of all post-mortal exams. On their part, the industry data on the U.S. prevalence of peripheral arterial disease are ranging from 3.5 million cases at the lower end to as high as 25-35 million. Finally, experts in the field generally agree that symptomatic peripheral atherosclerosis affects approximately 8 to 12 million Americans, with about 2.0 million cases of clinically significant cases warranting intervention being diagnosed annually. There are some signs that the incidence of atherosclerosis has been rising during the last decade, reflecting both the aging of the population and continuing expansion of the patient caseloads afflicted by the diabetes, hypertension, and obesity. Arterial vessels of the lower extremities constitute both the most common sites of chronic peripheral vascular occlusions caused by atherosclerosis, and the primary target for interventional treatment with the use of percutaneous transluminal angioplasty (PTA) and stenting techniques.

Aside from their primarily intended uses in recanalization of occluded vascular conduits, covered peripheral stenting devices, or endoluminal stent-grafts are also increasingly employed in less-invasive transcatheter repair (isolation) of rupture-prone aortic aneurysms warranting intervention.