Category Archives: cancer

topic about cancer diagnostics or therapeutics, with therapeutics to include any type of treatment (e.g., drug, device, etc.)

Reconstructive surgery is increasingly aesthetic

Reconstructive surgery is the subset of “plastic” surgery focused on correcting the anatomy, aesthetics, or both, for patients who have been treated for disease or trauma, which sets it apart from purely aesthetic procedures performed for people wishing to improve their appearance above and beyond what they were given by birth (excluding congenital defects) or to reduce the signs of aging.

Given the volume of the non-clinically-indicated aesthetic procedures, and their increasingly sophisticated techniques and technologies, reconstructive surgery specialists have integrated aesthetics advances and can now achieve spectacular results that go well beyond the simple reconstructive procedures of the past, which were much less effective in concealing the trace evidence of disease and trauma.

By far, the most common reconstructive procedures are to address the physical appearance resulting from the removal of tumors. In the U.S. alone, reconstruction for tumor removal is performed over 4 million times annually. The remainder of reconstructive procedures covers a gamut of major and minor trauma and diseases.

Below is the distribution of non-aesthetic (only) reconstructive procedures in the U.S.

reconstructive-pie

Source: MedMarket Diligence, LLC; Report #S710.

Through 2018, the global medical reconstructive and aesthetic products market is expected to reach a value of about $10.7 billion. Energy-based products such as lasers will experience the highest growth level. In most geographical regions and particularly in the U.S. and Europe, there is a growing consumer demand for medical cosmetic procedures and through 2020, even the lower income groups are likely to demand for more procedures, as the treatments become increasingly main stream. During the past few years, practitioners in the U.S. were rather forced to implement discounts and now with the revival of the economy, the total fee growth is likely to rebound. Successful companies in the sector mostly rely on a formula for continued research and development, pursuing additional, new business opportunities to increase expertise and product offerings. These companies remain solidly active in the eyes of high-end dermatologists, plastic and cosmetic surgeons.  As the aesthetic market is all about new products, the companies will be left behind, if they do not come up a new product every now and then.


This post is drawn from, “Global Markets for Products and Technologies in Aesthetic and Reconstructive Surgery, 2013-2018″, Report #S710, published by MedMarket Diligence, LLC.  For details, see link/a>.

Tissue Engineering and Cell Therapy Market Outlook

The market for tissue engineering and cell therapy products is set to grow to nearly $32 billion by 2018. This figure includes bioengineered products that are themselves cells or are actively stimulating cell growth or regeneration, products that often represent a combination of biotechnology, medical device and pharmaceutical technologies. The largest segment in the overall market for regenerative medicine technologies and products comprises orthopedic applications. Other key sectors are cardiac and vascular disease, neurological diseases, diabetes, inflammatory diseases and dental decay and injury.

An overview (map) of the spectrum of clinical applications in tissue engineering and cell therapy is shown below:

Source: Report #S520

Cell therapy is defined as a process whereby new cells are introduced into tissue as a method of treating disease; the process may or may not include gene therapy. Forms of cell therapy can include: transplantation of autologous (from the patient) or allogeneic (from a donor) stem cells , transplantation of mature, functional cells, application of modified human cells used to produce a needed substance, xenotransplantation of non-human cells used to produce a needed substance, and transplantation of transdifferentiated cells derived from the patient’s differentiated cells.

Once considered a segment of biomaterial technologies, tissue engineering has evolved into its own category and now comprises a combination of cells, engineering and suitable biochemical and physiochemical factors to improve or replace biological functions. These include ways to repair or replace human tissue with applications in nearly every medical specialty. Regenerative medicine is often synonymous with tissue engineering but usually focuses on the use of stem cells.

Tissue engineering and cell therapy may be considered comprised of bioengineered products that are themselves cells or are actively stimulating cell growth or regeneration. These often comprise a combination of biotechnology, medical device and pharmaceutical technologies.

Researchers have been examining tissue engineering and cell therapy for roughly 30 years. While some products in some specialties (such as wound care) have reached market, many others are still in research and development stages. In recent years, large pharmaceutical and medical device companies have provided funding for smaller biotech companies in the hopes that some of these products and therapies will achieve a highly profitable, commercial status. In addition, some companies have been acquired by larger medical device and pharmaceutical companies looking to bring these technologies under their corporate umbrellas. Many of the remaining smaller companies received millions of privately funded dollars per year in research and development. In many cases it takes at least ten years to bring a product to the point where human clinical trials may be conducted. Because of the large amounts of capital to achieve this, several companies have presented promising technologies only to close their doors and/or sell the technology to a larger company due to lack of funds.

The goal of stem cell research is to develop therapies to treat human disease through methods other than medication. Key aspects of this research are to examine basic mechanisms of the cell cycle (including the expression of genes during the formation of embryos) as well as specialization and differentiation into human tissue, how and when the differentiation takes place and how differentiated cells may be coaxed to differentiate into a specific type of cell. In the differentiation process, stem cells are signaled to become a specific, specialized type of cell when internal signals controlled by a cell’s genes are interspersed across long strands of DNA and carry coded instructions for all the structures and functions of a cell. In addition, cell differentiation may be caused externally by use of chemicals secreted by other cells, physical contact with neighboring cells and certain molecules in the microenvironment.

The end goal of stem cell research is to develop therapies that will allow the repair or reversal of diseases that previously were largely untreatable or incurable.. These therapies include treatment of neurological conditions such as Alzheimer’s and Parkinson’s, repair or replacement of damaged organs such as the heart or liver, the growth of implants from autologous cells, and even regeneration of lost digits or limbs.

In a developing human embryo, a specific layer of cells normally become precursor cells to cells found only in the central nervous system or the digestive system or the skin, depending on the cell layer and the elements of the embryo that direct cell differentiation. Once differentiated, many of these cells can only become one kind of cell. However, researchers have discovered that adult body cells exist that are either stem cells or can be coaxed to become stem cells that have the ability to become virtually any type of human cell, thus paving the way to engineer adult stem cell that can bring about repair or regeneration of tissues or the reversal of previously incurable diseases.

Another unique characteristic of stem cells is that they are capable of self-division and self-renewal over long periods of time. Unlike muscle, blood or nerve cells, stem cells can proliferate many times. When exposed to ideal conditions in the laboratory, a relatively small sample of stem cells can eventually yield millions of cells.

There are five primary types of stem cells: totipotent early embryonic cells (which can differentiate into any kind of human cell); pluripotent blastocyst embryonic stem cells, which are found in an embryo seven days after fertilization and can become almost any kind of cell in the body; fetal stem cells, which appear after the eighth week of development; multipotent umbilical cord stem cells, which can only differentiate into a limited number of cell types; and unspecialized adult stem cells, which exist in already developed tissue (commonly nerves, blood, skin, bone and muscle) of any person after birth.

tissue-cell-2012-2018

Source: MedMarket Diligence, LLC; Report #S520, “Tissue Engineering & Cell Therapy Worldwide 2009-2018.”

Developmental Timescales

Tissue engineering and cellular therapy products take years of research and many millions of dollars (averaging about $300 million, according to some reports) before they make it over the hurdles of clinical trials and into actual market launch. More than one small biotech company has burned through its money too quickly and been unable to attract enough investment to keep the doors open. The large pharmaceutical and medical device companies are watching development carefully, and have frequently made deals or entered into alliances with the biotechs, but they have learned to be cautious about footing the bill for development of a product that, in the end, may never sell.

For many of the products in development, product launch is likely to occur within five years. Exceptions include skin and certain bone and cartilage products, which are already on the market. Other products are likely to appear on the European market before launch in the United States, due to the presence of (so far) less stringent product review and approval laws in the European Union.

Even when the products are launched, take-up will be far from 100% of all patients with that particular condition. Initially, tissue engineering and cell therapy products will go to patients suffering from cancers and other life-threatening conditions, who, for example, are unable to wait any longer for a donor organ. Patients who seem to be near the end of their natural lives likely will not receive these treatments. Insurance coverage will certainly play a key role as well in the decision about who receives which treatments and when. But most importantly, physicians will be selecting who among their patients will be treated; the physicians learn about the treatments by using them, by observing the patient’s reactions, and by discussing their experiences with colleagues. In other words, the application of tissue engineering and cellular therapy will progress in a manner similar to the introduction of any new technology: through generally conservative usage by skilled, highly trained physicians dedicated to providing their patients with the best possible treatment without causing them additional harm.

 

Posted via email from medmarket’s posterous

Applications, global markets in tissue engineering and cell therapy

Screen Shot 2014-04-17 at 7.37.44 AMThe market for tissue engineering and cell therapy products is set to grow from a respectable $8.3 billion in 2010 to nearly $32 billion by 2018. This figure includes bioengineered products that are themselves cells or are actively stimulating cell growth or regeneration, products that often represent a combination of biotechnology, medical device and pharmaceutical technologies. The largest segment in the overall market for regenerative medicine technologies and products comprises orthopedic applications. Other key sectors are cardiac and vascular disease, neurological diseases, diabetes, inflammatory diseases and dental decay and injury.

Cell-tissue-applications

Factors that are expected to influence this market and its explosive growth include political forces, government funding, clinical trial results, industry investments (or lack thereof), and an increasing awareness among both physicians and the general public of the accessibility of cell therapies for medical applications. Changes in the U.S. government’s federal funding of embryonic stem cell research has given a potentially critical mass of researchers increased access to additional lines of embryonic stem cells. This is expected to result in an increase in the number of research projects being conducted and thus possibly hasten the commercialization of certain products.

regional-forecast

Source: Report #S520, “Tissue Engineering, Cell Therapy and Transplantation: Products, Technologies & Market Opportunities, Worldwide, 2009-2018.”

Another factor that has influenced the advancement of regenerative technologies is found in China, where the Chinese government has encouraged and sponsored cutting-edge (and some have complained ethically questionable) research. While China’s Ministry of Health has since (in May 2009) established a policy requiring proof of safety and efficacy studies for all gene and stem cell therapies, the fact remains that this research in China has spurred the advancement of (or at least awareness of) newer applications and capabilities of gene and stem cell therapy in medicine.

Meanwhile, stricter regulations in other areas of Asia (particularly Japan) will serve to temper the overall growth of commercialized tissue and cell therapy–based products in that region. Nonetheless, the growth rate in the Asia/Pacific region is expected to be a very robust 20% annually.


MedMarket Diligence’s Report #S520 remains the most comprehensive and credible study of the current and project market for products and technologies in cell therapy and tissue engineering.

Growth in Sales of Products in Cell Therapy and Tissue Engineering

Tissue engineering and cell therapy comprise a market for regenerative products that has been growing and will continue to grow at over 20% annually through 2018. This market spans many specialties, the biggest of which is therapies for degenerative and traumatic orthopedic and spine applications. Other disorders that will benefit from cell therapies include cardiac and vascular disease, a wide range of neurological disorders, diabetes, inflammatory diseases, and dental decay and/or injury. Key factors expected to influence the market for regenerative medicine are continued political actions, government funding, clinical trials results, industry investments, and an increasing awareness among both physicians and the general public of the accessibility of cell therapies for medical applications.

The current high rate of growth in cell therapy and tissue engineering product sales is due to the confluence of multiple market drivers:

  • Advances in basic science revealing the nature of cell growth, differentiation and proliferation
  • Advances by industry to manipulate and determine cell growth toward specific therapeutic solutions
  • Low barrier to entry for competitors in the market
  • Broad range of applications of cell/tissue advances to many different specialties with modest adaptation needed
  • Strong venture funding

The dominant clinical area driving cell therapy and tissue engineering product sales is orthopedics and musculoskeletal, wherein bone grafts and bone graft substitutes are well-established. Below is the projected balance of cell therapy and tissue engineering product revenues by clinical area through 2018.

Screen Shot 2014-04-08 at 9.26.25 AM

Source: MedMarket Diligence, LLC; Report #S520.

While orthopedics, musculoskeletal and spine applications will remain a huge share of this market, more growth is coming from cell/tissue products in most other areas, which have only recently (within the last five years) begun to establish themselves.

Screen Shot 2014-04-08 at 9.34.50 AM

Source: MedMarket Diligence, LLC; Report #S520.

The increasing problem of chronic wounds, and their medtech solutions

Wounds have many different sources, etiologies and forms and, therefore, demand a range of approaches. By virtue of these differences, they have considerably different costs. At the top of the list of wound culprits driving up cost is the category of chronic wounds. Simply put, these wounds are very slow to heal due to poor circulation at the site (e.g., decubitus stasis, or pressure, ulcers), concomitant health issues (diabetes) and the difficulty in changing the local environment toward one with conditions more conducive to the healing process.

Chronic wounds are not the most common — that is a category represented by surgical wounds, in which the wound has been created medically or surgically in order to excise or otherwise manage diseased tissue. But surgical wounds, traumatic wounds and lacerations are by their nature acute and, especially for surgical wounds, can be surgically managed to create clean wound edges, good vascularization and other conditions that accelerate healing. Therefore, while the volume of surgical and traumatic wounds and lacerations is significant, their costs are manageable and their growth is unremarkable.

But the costs of chronic wounds are higher due to both the types of different products required and the length of time required for those products to be used. Moreover, given the association of chronic wounds with conditions that are growing in prevalence due to increasing incidence of obesity, diabetes and other conditions, combined with an aging population that is increasingly sedentary, the prevalence of chronic wounds is shifting the balance among wound types. Below is the balance of wound types by prevalence worldwide in 2011, followed by the projected balance of wound types in 2025.

Worldwide Share of Wound Prevalence By Type, 2011

Screen Shot 2014-03-25 at 9.13.44 AM

 

Source: MedMarket Diligence, LLC; Report #S190 and Report #S249.

 

Worldwide Share of Wound Prevalence By Type, 2025

Screen Shot 2014-03-25 at 9.14.16 AM

 

Source: MedMarket Diligence, LLC; Report #S190 and Report #S249.

Surgical wounds offer the potential for use of devices which can ensure hemostasis, prevent internal adhesions and anastomoses, secure soft tissue, and close the skin. Traumatic wounds also offer potential for skin closure products and for hemostats, and adhesion prevention during post-trauma surgery. New wound-covering sealant products may also offer potential for treatment of cuts, grazes, and burns.

Chronic wounds are generally not amenable to treatment by adhesives, sealants and hemostats unless the wound has either been debrided to a sterile bleeding surface (in which case it becomes like a surgical wound), or the product offers some stimulant activity. Many hemostats exhibit some inflammatory and cytokinetic activity, which has been associated with accelerated healing. However, this inflammatory activity has also been known to burn the patient’s skin. Chronic wounds are instead dealt with often by a combination of debridement, frequent dressing changes, products to address local vascular circulation and pressure (negative and positive) and others. Progress is being made in reducing the associated healing times, but a large opportunity remains.

Medtech from incremental to quantum leap advances

Advanced medical technologies become advanced by the application of innovation that results in more effective, less costly or otherwise arguably better outcomes (including reduced risk of complications or disease recurrence) for patients, including in some cases enabling treatment when none was previously possible. It is intrinsic to every entrepreneur that the idea he/she is pursuing accomplishes this.

Manufacturers of products on the market have an imperative to either improve upon those products or make them obsolete. This imperative is manifested in a spectrum of planned innovation from simple incremental innovations to the quantum leap of a radically new approach.

There is an enormous amount of technology development, often applicable to multiple different clinical applications, that will be realized in product markets in the future. For the moment, though, I would like to look beyond “incremental improvements” or “product line extensions” or other marginal advances that serve little more than superficially addressing shortcomings of existing products on the market. I would like to look at waves of innovation coming in the short to long term that are expected to impact medtech in ways that are increasingly “radical” or represent varying orders of magnitude of improvement in results.

Three categories spanning short, mid, and long reflect what I see in medtech development. Below, I outline the nature of each and the specific examples that are or will be emerging.

Short term. With change encompassing technologies that are just sufficiently different so that they cannot simply be called incremental innovations, some short term advances often combine two or more complementary and/or synergistic technologies in new ways to advance healthcare. Examples include:

  • Image-guided surgeries to augment the surgeon’s ability to navigate complex anatomy or discern the margins of healthy versus disease tissue.
  • Natural orifice endoscopic surgery (and shift in general from invasive to interventional and intraductal procedures) to either drastically reduce or eliminate the trauma of surgical access
  • Non-invasive therapeutics (like lithotripsy, gamma knife, others) to treat disease without trauma to collateral tissues.
  • Genome-driven treatment profiling (prescreening to determine ideal patients with high probable response).
  • Personalized (custom) implants. These already exist in orthopedics, but the potential for customized implants in gastroenterology, cardiology, and many other clinical areas is wholly untapped.
  • Regenerative technologies (bone, skin, other). These technologies represent introductory markets with lowered challenge compared to more complex functional anatomy (e.g., vital organs).
  • Smart devices (implantable sensors, RFID-tagged implants, etc.) to provide data to clinicians on implant location and status or, in the extreme respond diagnostically or therapeutically to changes in the implant’s immediate environment.

Mid-term. These are new therapeutic options that are fundamentally different than those in current use for a given treatment option. These are technologies that have demonstrated high probability of being feasible in large scale use, but have not yet accumulated enough clinical data to warrant full regulatory approval.

  • Nanotech surface technologies for biocompatibility, localized treatment delivery or other advantages at the interface between patient and product.
  • Materials that adapt to changes in implant environment, to maintain pH, to release drugs, to change shape.
  • Artificial heart. A vital organ replacement that currently has demonstrated the capacity to be a bridge to transplant but has also advanced sufficiently to open the possibility of permanent replacement in the not-too-distant future.
  • Cell/device hybrids. These are organ replacements (e.g., kidney, lung, liver) performing routine function or natural organs, but configured in a device to address unresolved issues of long term function, immune response and others.
  • Artificial organs (other than heart) — closed loop glucometer/insulin pump (artificial pancreas). These are not even partial biological representations of the natural organ, but completely synthetic “organs” that intelligently regulate and maintain a steady state (e.g., blood glucose levels) by combining the necessary functions through combined, closed-loop mechanical means (an insulin pump and glucometer with the necessary algorithms or program to independently respond to changes in order to otherwise maintain a steady state.

Long-term. Orders of magnitude, quantum shift, paradigm shift or otherwise fundamentally different means to serve clinical need.

  • 3D implant printing. In a recent example, in an emergency situation a 3D implant for repair of a infant’s trachea was approved by the FDA. These implants, as in the case of the trachea repair, will most often be customized for specific patients, matching their specific anatomy and may even include their (autologous) cells. They may also be made of other materials including extracellular matrices that will stimulate natural cell migration followed eventually by bioabsorption of the original material. Depending upon type of material and complexity of the anatomy, these technologies may emerge in the near or distant future.
  • Gene therapies. Given the root cause of many diseases has a genetic component or is entirely due to a genetic defect, gene therapies will be “permanent corrections” of those defects. An enormous number of hurdles remain to be crossed before gene therapies are largely realized. These deal with delivery and permanent induction of the corrected genes into patients.
  • Stem cell therapies. The potential applications are many and the impact enormous of stem cell therapies, but while stem cell technology (whether for adult or embryonic) has made enormous strides, many challenges remain in solving the cascade of differentiation while avoiding the potential for aberrant development of these cells, sometimes to proliferative (cancerous) states.
  • “Rational” therapeutics. Whether by stem cell therapies, gene therapies or other biochemical or biological approach, “rational” therapeutics represent the consummate target for medical technology. Such therapeutics are “rational” in the sense that they perfectly address disease states (i.e., effect cures) without complication or need for recurrent intervention.

There are certainly more holes than fabric in this tapestry of short-, mid- and long-term technology innovation, but this should serve to illustrate the correlation between the sophistication of the potential medtech solution and the level of technical challenge in order to achieve each.

 

Reference reports in Ophthalmology, Coronary Stents and Tissue Engineering

MedMarket Diligence has added three previously published, comprehensive analyses of  medtech markets to its Reference Reports listings. The markets covered in the three reports are:

  • Ophthalmology Diagnostics, Devices and Drugs (see link)
  • Coronary Stents: Drug-Eluting, Bare, Bioresorbable and Others (see link)
  • Tissue Engineering, Cell Therapy and Transplantation (see link)

Termed “Reference Reports”, these detailed studies were initially completed typically within the past five years. They now serve as exceptional references to those markets, since fundamental data about each of these markets has remained largely unchanged. Such data includes:

  • Disease prevalence, incidence and trends (including credible forecasts to the present)
  • Clinical practices and trends in the management of the disease(s)
  • Industry structure including competitors (most still active today)
  • Detailed appendices on procedure data, company directories, etc.

Arguably, a least one quarter of every NEW medtech report contains background data encompassing the data listed above.  Therefore, the MedMarket Diligence reports have been priced in the single user editions at $950 each, which is roughly one quarter the price of a full report.

See links above for detailed report descriptions, tables of contents, lists of exhibits and ordering. If you have further questions, feel free to contact Patrick Driscoll at (949) 859-3401 or (toll free US) 1-866-820-1357.

See the comprehensive list of MedMarket Diligence reports at link.