Bioengineered skin displacing traditional wound management products

Very decided shifts are taking place in the wound management market as advanced wound technologies take up caseload from traditional technologies like gauze and others. It becomes evident that traditional products once representing above average sales are now projected to be below average (gauze) as are even a moderately new technology, “negative pressure wound therapy devices” (NPWD), while bioengineered skin and skin substitutes will represent “above average”.

Global Wound Management Market,
Above/Below Average Sectors, 2015 & 2024

Screen-Shot-2016-03-16-at-8.02.29-AM

Source: Report #S251.

Global Wound Management Market, Sales, 2015 & 2024

Screen Shot 2016-03-16 at 8.02.44 AM

Source: Report #S251.

Despite the tepid growth of traditional wound management products, they remain very large markets that even the most aggressively growing segments will require time to match that volume. Bioengineered skin and skin substitutes are moving fast in that direction.

Global CAGR 2016-2024 for Wound Management Segments

Screen-Shot-2016-03-16-at-8.09.10-AM

Source: Report #S251.

If you would like excerpts from this report, Click Here.

Wound Markets East and West: A Comparison?

Placed on the same scale, U.S. markets for wound management technologies do not seem starkly different from those in the Asia/Pacific region, with insignificant differences, now and in the future, in the balance of different technologies used.

Screen Shot 2016-03-07 at 8.50.43 AMScreen Shot 2016-03-07 at 8.50.55 AM

Source: MedMarket Diligence, LLC; Report #S251.

However, one cannot really compare the U.S. and Asia/Pacific on the “same scale” without seeing the obvious differences:

Screen Shot 2016-03-07 at 8.49.54 AMScreen Shot 2016-03-07 at 8.50.28 AM

Source: MedMarket Diligence, LLC; Report #S251. If you would like excerpts from this report, Click Here.

Growth in wound management from trends in prevalence, technology

Worldwide, an enormous number of wounds are driving a $15 billion market that will soon pass $20 billion. What is driving wound sales is the continued growth and prevalence of different wound types targeted by medical technologies ranging from bandages to bioengineered skin, physical systems like negative pressure wound therapy, biological growth factors, and others.

Most attention in wound management is focused on improving conventional wound healing in difficult clinical situations, especially for chronic wounds, in the expansion of wound management technologies to global markets, and in the application of advanced technologies to improve healing of acute wounds, especially surgical wounds.

Global Prevalence of Wound Types, 2015

Screen Shot 2016-03-02 at 12.18.44 PM

Source: MedMarket Diligence LLC; Report #S251. Request excerpts from this report.

Total Wound Care Market as Percent of Entire Market, 2024

Screen Shot 2016-03-02 at 12.44.46 PM

Source: MedMarket Diligence LLC; Report #S251. Request excerpts from this report.


 

Global Wound Management Market: Segment Size, Growth to 2024

The content of this post is drawn from the complete Report #S251, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World”. For separate coverage of sealants, glues, and hemostats in wound management, see Report #S290.

The World Market for Wound Management Report encompasses twelve product segments:

  • Traditional Adhesive Dressings
  • Traditional Gauze Dressings
  • Traditional Non-Adherent Dressings
  • Film Dressings
  • Foam Dressings
  • Hydrogel Dressings
  • Hydrocolloid Dressings
  • Alginate Dressings
  • Antimicrobial Dressings
  • Negative Pressure Wound Therapy Devices
  • Bioengineered Skin & Skin Substitutes
  • Wound Care Growth Factors

The report examines North and South America, the European Union, Asia/Pacific and Rest of World, and looks at markets and growth rates by product and country for the years 2014-2024. The world market in 2024 for the total wound management market represented by the segments listed above is projected to be worth over $22 billion, with segments growing at widely variable rates, with lowest sales growth in traditional adhesive bandages and the highest sales growth in bioengineered skin and skin substitutes

Source: MedMarket Diligence, LLC; Report #S251.

Below are representative examples of each type of wound management product.

    
Dressing categoryProduct examplesDescriptionPotential applications
FilmHydrofilm, Release, Tegaderm, BioclusiveComes as adhesive, thin transparent polyurethane film, and as a dressing with a low adherent pad attached to the film.Clean, dry wounds, minimal exudate; also used to cover and secure underlying absorptive dressing, and on hard-to-bandage locations, such as heel.
FoamPermaFoam
PolyMem
Biatain
Polyurethane foam dressing available in sheets or in cavity filling shapes. Some foam dressing have a semipermeable, waterproof layer as the outer layer of the dressingFacilitates a moist wound environment for healing. Used to clean granulating wounds which have minimal exudate.
HydrogelHydrosorb Gel Sheet, Purilon, Aquasorb, DuoDerm, Intrasite Gel, GranugelColloids which consist of polymers that expand in water. Available in gels, sheets, hydrogel-impregnated dressings.Provides moist wound environment for cell migration, reduces pain, helps to rehydrate eschar. Used on dry, sloughy or necrotic wounds.
HydrocolloidCombiDERM, Hydrocoll, Comfeel, DuoDerm CGF Extra Thin, Granuflex, Tegasorb, Nu-DermMade of hydroactive or hydrophilic particles attached to a hydrophobic polymer. The hydrophilic particles absorb moisture from the wound, convert it to a gel at the interface with the wound. Conforms to wound surface; waterproof and bacteria proof.Gel formation at wound interface provides moist wound environment. Dry necrotic wounds, or for wounds with minimal exudate. Also used for granulating wounds.
AlginateAlgiSite, Sorbalgon Curasorb, Kaltogel, Kaltostat, SeaSorb, TegagelA natural polysaccharide derived from seaweed; available in a range of sizes, as well as in ribbons and ropes.Because highly absorbent, used for wounds with copious exudate. Can be used in rope form for packing exudative wound cavities or sinus tracts.
AntimicrobialBiatain Ag
Atrauman Ag
MediHoney
Both silver and honey are used as antimicrobial elements in dressings.Silver: Requires wound to be moderately exudative to activate the silver, in order to be effective
NPWDSNa
V.A.C. Ulta
PICO
Renasys (not in USA)
Prospera PRO series
Invia Liberty
Computerized vacuum device applies continuous or intermittent negative or sub-atmospheric pressure to the wound surface. NPWT accelerates wound healing, reduces time to wound closure. Comes in both stationary and portable versions.May be used for traumatic acute wound, open amputations, open abdomen, etc. Seems to increase burn wound perfusion. Also used in management of DFUs. Contraindicated for arterial insufficiency ulcers. Not to be used if necrotic tissue is present in over 30% of the wound.
Bioengineered Skin and Skin SubstitutesAlloDerm, AlloMax, FlexHD, DermACELL, DermaMatrix, DermaPure, Graftjacket Regenerative Tissue Matrix, PriMatrix, SurgiMend PRS, Strattice Reconstructive Tissue Matrix, Permacol, EpiFix, OASIS Wound Matrix, Apligraf, Dermagraft, Integra Dermal Regeneration Template, TransCyteBio-engineered skin and soft tissue substitutes may be derived from human tissue (autologous or allogeneic), xenographic, synthetic materials, or a composite of these materials.Burns, trauma wounds, DFUs, VLUs, pressure ulcers, postsurgical breast reconstruction, bullous diseases

Source: MedMarket Diligence, LLC; Report #S251.

There are some market restraints at work, primarily the high cost of the new technologies. Not all country healthcare budgets can afford advanced wound care products, even if they are proven to decrease healing times and hospital costs over the longer run. The development of substitute products threatens existing product categories, while a lack of sufficient clinical and economic evidence backing new technology hinders growth and acceptance of some of the more advanced wound management technologies.

In addition, improved wound prevention and a lack of regulation on tissue engineering in the EU are also expected to hold back the development of new technologies. In addition to market restraints, there are a number of drivers that are expected to shape this market in the years to come. One of the primary drivers is the aging of the global population. Chronic diseases, such as circulatory conditions, anemias and autoimmune diseases influence the healing process as a result of their influence on a number of bodily functions. Illnesses that cause the most significant problems include diabetes, chronic obstructive pulmonary disease (COPD), arteriosclerosis, peripheral vascular disease (PVD), heart disease, and any conditions leading to hypotension, hypovolemia, edema, and anemia. While chronic diseases are more frequent in the elderly, wound healing will be delayed in any patient with underlying illness. Happily, most wounds heal without any problems. However, chronic wounds may take months or years to fully close, or may never close. Chronic wounds adversely affect the individual’s quality of life, and are a leading cause of burgeoning healthcare costs. Type 2 diabetes represents 85-95% of all diabetes in developed countries, and accounts for an even higher percentage in developing countries. There were 26 million diabetic patients in the US in 2012 and 285 million patients globally.   Of these patients, approximately 15% will develop a diabetic foot ulcer and 50% of these will become infected, representing an estimated 2 million patients. Diabetic foot infections are currently treated with systemic antibiotics, but the estimated failure rate of antibiotics for diabetic foot ulcers is in excess of 22%. A patient with diabetes is at significant risk of damage to tissues caused by impaired homeostasis due to the disease process. For example there is a tendency for such tissues to develop blockages in smaller blood vessels, which reduces the ability of these vessels to provide sufficient oxygen to tissues already under stress due to compromised nutrient supply and the diabetic condition. These patients then develop arterial ulcers. They may also have a tendency to suffer from venous ulcers, due to the underlying poor condition of cells as a result of the diabetes. The diabetic foot is the most common cause of non-traumatic lower extremity amputations in the US and Europe: there is an average of 82,000 amputations per year in the U.S., costing an estimated $1.6 billion annually. The estimated cost of foot ulcer care in the U.S. ranges from $4,595 per ulcer episode to more than $28,000 and the total annual cost of foot ulcer care in the US has been estimated to be as high as $5 billion.

Pressure, or decubitus, ulcers are another of the most common types of chronic wounds. The treatment of pressure ulcers places a major burden on healthcare systems worldwide, with an emerging additional cost of litigation increasing in importance over recent years. Healthcare practitioners need to be aware of both the direct and indirect costs and consider how the implementation of prevention protocols may offer cost savings in the longer term. The cost of a dressing for example as a prevention tool is minimal in comparison to the costs of treating an established pressure ulcer. Following are a few hard numbers on the true financial cost of pressure ulceration:

  • The estimated cost to the US hospital sector is $11 billion per annum
  • The estimated cost to the UK national health service is estimated at £1.4-£2.1 billion annually (4% of total NHS expenditure)
  • Lawsuits remain common in both acute and long term care — with high payments in certain cases
  • The average cost to treat an individual with an unstageable ulcer or a deep tissue injury is estimated to be $43,180
  • The average length of stay in hospital is almost three times longer for chronic wounds
  • The mean hospital cost for management of pressure ulcers in the U.S. is $14,426. In comparison, the same cost in Korea is identified as $3,000-$7,000.

The cost of treating chronic wounds is one element driving the development and utilization of advanced wound care technologies. Other drivers are the aging of the population, and the obesity epidemic, which is expected to produce a wave of diabetics in the years to come.

Source: Report #S251.

 

Top Growth Wound Care Product Sales By Country

Whether sales growth arises by a preferred adoption of one technology over another or by better than average economic conditions — or both, sales of wound management products are driven by technology adoption rates that vary by country, clinical practice patterns, reimbursement and other variables.

We assessed current and forecast sales for the following products:

  • Traditional Adhesive Dressings
  • Traditional Gauze
  • Traditional Non-Adherent
  • Film
  • Foam
  • Hydrogel
  • Hydrocolloid
  • Alginate
  • Antimicrobial
  • Negative Pressure Wound Therapy
  • Bioengineered Skin & Skin Substitutes
  • Growth Factors

For all product segments but the traditional adhesive, gauze, and non-adherent wound care products (which were assessed only at the global level), we assessed growth in each of the following countries/regions: Americas (USA, Rest of North America, Latin America), Europe (United Kingdom, Germany, Italy, France, Spain, Rest of Europe), Asia/Pacific (Japan, Korea, Rest of Asia/Pacific), and Rest of World.

From our examination (report #S251) of the global market for wound management products, below are the top product-country cohorts in terms of projected compounded sales growth from 2015 to 2024.

Source: MedMarket Diligence, LLC; Report #S251.

 

Leaders in the global wound management market

There are literally many hundreds—perhaps thousands—of companies in wound care, ranging from tiny companies operating with a couple of employees in a developing country, to large-cap market leaders with thousands of employees located in offices around the world.

The following exhibit shows that a handful of companies account for a large part of the global advanced wound care market. Acelity LP, Inc., which is a merger of Kinetic Concepts, Inc. (KCI), Systagenix, Inc. and LifeCell, is now one of the leaders in this market, and accounts for about 20% of wound care revenues. Acelity is followed by Smith & Nephew plc, which is followed by several other companies with 13% or less of the market. The hundreds of other companies fall into the 20% of “Other”. In summary, about seven companies account for approximately 80% of the advanced wound care market worldwide.

Source: MedMarket Diligence, LLC; Report #S251.

 

Global wound care market — double-digit growth from within

Bioengineered skin, skin substitutes, foam dressings, hydrocolloids, and growth factors are among top growth segments in a global market for advanced wound management that is otherwise modest in growth, but high in volume.

The 2016 global wound management market will hit nearly $15 billion. With sales growing at just better than 5% annually on population growth, migration of technologies to developing markets, and increased per capita utilization, the aggregate market is stably tied to persistent caseload.  This regular, high volume of wound product sales supports a steady stream of innovation intended to gain even the smallest edge in share, an advantage that gains its value in real terms from the multiple of such a large global caseload.

In a market in which autografts and allografts have long been common, the development of cost-effective and safe bioengineered skin and skin substitutes is finding ready adoption in wounds of all types, but particularly burn wounds.

Due to their small base of existing sales thus far, even incremental expansion of sales in the use of biological growth factors in wound management reflects high growth through the forecast period.

Biotech need not be behind the higher growth in wound management technologies. Excellent growth prospects are also seen in foams, hydrogels, hydrocolloids, and other dressing materials.

Physical systems, including negative pressure wound devices, are not demonstrating growth prospects as good as traditional wound dressing products, let alone advanced wound products.

In short, the large global market is stable and growing at best modestly, but within this market, advanced wound management technologies’ sales are accelerating at the expense of traditional wound products. Growth in wound management is clearly coming from within.

Advanced Wound Care Sales, 2014 & 2024

wound-growth_2014-2024

Source: MedMarket Diligence, LLC; Report #S251.

Global wound market highlights

Highlights from the 2015 MedMarket Diligence report #S251, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World” —

Wound management is a large global market (almost $15 billion currently) driven by high and sustained volume of traumatic, surgical, and other chronic and acute wound types. Simple wound dressings with little technology development continue to more than adequately serve a large swath of wound caseload and will continue to generate 1-2% in annual growth through 2024.

However, while a great deal of wound management products provide unsophisticated but effective wound care — and this is particularly why these products sell much better outside well developed western markets — the growing cost of wounds that do not heal fast enough, or at all, has been compounded by changes in wound incidence arising from increased obesity, the aging population, and other forces, creating demand for more sophisticated wound solutions. Enter the array of advanced wound care products like innovative wound dressing materials and components, bioengineered skin and other skin substitutes, biological wound growth factors, and others. These products have been projected to grow at an annual rate of up to 16% annually. The result is a steady erosion of the share of the global market represented by simple dressings and bandages.

 

Source: MedMarket Diligence, LLC; Report #S251

Wound management: Novel technologies, high growth, high volume, MANY companies

Wound management technologies span an incredible spectrum of technologies — bandages, tapes, dressings (bioactive, antimicrobial, non-adherent…), sutures, staples, bioengineered skin & substitutes, negative pressure, ultrasound, pulsed electromagnetic therapy, growth factors, gene therapy…

Wound management is an old medical practice, and wounds have not changed in nature other than the mix prevalence of different wound types. Yet, the volume of all wounds, and the need to improve they may be managed, support development of many new technology and changes in clinical practice. In turn, this drives and sustains an unusually large number of competitors.

Source: MedMarket Diligence, LLC; Report #S251.

 

Below is a list, drawn from the forthcoming December 2015 report (#S251) from MedMarket Diligence global wound management market, of companies that are sufficiently large or active or noteworthy for us to have specifically profiled in our report. The true number of companies in wound (and detailed but not “profiled” in our report) is in the hundreds.

3M Health Care, ACell, Acelity L.P. Inc., AcryMed Inc., Agennix Incorporated, AGT Sciences Ltd, Alliqua Biomedical, AlloSource, Altrika Ltd, Amniox Medical, Inc., Anika Therapeutics, Argentum Medical, Avita Medical, B. Braun Melsungen AG, Biopharm GmbH, Biotime, Inc., Bio-Tissue, Inc., BSN medical, Cardium Therapeutics, CliniMed Limited, Coloplast Group, Covalon Technologies, Ltd., ConvaTec Inc., Cook Biotech, Inc., Covidien, Cytogenix, Cytomedix, Derma Sciences, Inc., DeRoyal Industries Inc., Devon Medical, Diapulse Corporation of America, Eqalix, Inc., E-QURE Corporation, Euroderm AG, Gentell Inc, Geritrex Corp., Hartmann Group, Hollister Incorporated, Imbed Biosciences, Inc., Integra LifeSciences, Inc., Kendall (Covidien), Kinetic Concepts, Inc. (KCI), Kuros Biosurgery AG, Laboratoires URGO, LifeCell Corporation, Lohmann & Rauscher International GmbH and Co. KG, Macrocure, Medline Industries, Microban International Ltd., MicroVas Technologies, Inc, MiMedx, Mölnlycke Health Care AB, NovaBay Pharmaceuticals, Oculus Innovative Sciences, Organogenesis Inc, Osiris Therapeutics, Perry Baromedical, Prospera, ReliaMed, RXi Pharmaceuticals, SafeBlood Technologies, Sanofi Biosurgery (formerly Genzyme Biosurgery), SANUWAVE Health, Inc., Shire Regenerative Medicine, Smith & Nephew plc, Sorbion GmbH & Co., KG, Soluble Solutions, LLC, Spiracur, Inc., Systagenix Wound Management (US), Inc., TEI Biosciences, Tissue Regeneration Technologies, LLC, Tissue Regenix Group plc., UDL Laboratories, Uluru, Inc., ViroMed Co., Ltd., Vomaris Innovations, Inc., Wound Management Technologies, Inc.

The MedMarket Diligence Report #S251, “Worldwide Wound Management, Forecast to 2024:
Established and Emerging Products, Technologies and Markets
in the Americas, Europe, Asia/Pacific and Rest of World” (see link for details), provides a current and forecast assessment (to 2024) of the worldwide market for wound management.

 

Technologies in Development at Medtech Startups, October 2015

In our flurry of activity in October, we overlooked summarizing the new medical technologies identified at startups and added to the Medtech Startups Database:

  • Neodymium vaginal dilator for treatment of pelvic pain.
  • Large bore, power injection vascular access
  • Surgical instruments for use in bariatrics.
  • Surgical oncology.
  • Spine surgical technology including expandable intervertebral cage.
  • Technologies to treat hearing loss.
  • Device to determine blood vessel size.
  • Cerebrospinal fluid shunt.
  • Focused ultrasonic surgical devices for hemostasis, cauterization, and ablation.
  • Collagen polymers to create 3D tissue systems for drug discovery, engineered tissue/organ, wound management, and 3D bioprinting.
  • Regenerative medicine to treat brain injury or damage.
  • Neuro-monitoring and neuro-critical care.
  • Orthomusculoskeletal implants.
  • Devices and methods for hip replacement
  • Intraoperative image system.
  • Exocentric medical device
  • Electro-hydraulic generated shockwave for cosmetic, medical applications.

For a historical listing of technologies at medtech startups, see link.