Medtech fundings for March 2017

Medtech fundings for March 2017 stand at $576 million, led by the $59 million IPO of Symetics, the $50 million Series C funding of Moximed, the $45 million funding of Corindus, the $40 million funding round of VertiFlex, and the $38 million funding of pig-to-human xenotransplant company eGenesis.

The complete list of fundings in medtech for March 2017 thus far are shown at link. Below are the top fundings for the month.

Source: Compiled by MedMarket Diligence, LLC

For a historical list of fundings by month since 2009, see link.

Add tick cement to the list of natural adhesives pursued for medical applications

In past posts, we have reported on multiple naturally-occurring substances or methods for strong adhesion that are being investigated for their potential to be exploited for medical or surgical adhesion. These include adhesives from remora, mussels, geckos, crab shells, barnacles, Australian burrowing frogs, spider webs, porcupine quills, sandcastle worms, etc.

Researchers from MedUni Vienna and Vienna University of Technology are now investigating 300 different ticks for the “cement” used by the parasites to attach to hosts. The goal is to study the composition of the natural tick “dowel” used by the mouthparts of ticks and determine how it might serve as a template for new tissue adhesives.

The Vienna research also notes other natural adhesives are similarly being investigated for medical and surgical use:

Other potential “adhesive donors” are sea cucumbers, which shoot sticky threads out of their sac; species of salamander, which secrete extremely fast-drying adhesive out of skin glands, if attacked; or insect larvae, which produce tentacles or crabs, which can remain firmly “stuck,” even under water.

The incentive for studying natural adhesives is that they have been driven by evolution to provide strong adhesion without toxicity in various wet or dry conditions that are challenging for existing synthetic or existing natural glues (e.g., fibrin glues, cyanoacrylates, etc.). Surgical glues currently in use have some limitation arising from lesser strength, ease of use, toxicity, and other shortcomings. New glues will gain wider adoption, capturing procedure volume used with sutures, clips and other closure methods, particularly in internal use, if they are stronger and/or provide tighter seals (without needing to be combined with sutures on the same incision/wound) and do not cause the toxicity that some high strength medical glues do (e.g., synthetics like cyanoacrylates; “super glues”). The biologically-derived glues (or the surfaces structures of gecko feet) avoid the toxicities of synthetics and have often proven to have very high tensile strength. (The fast-curing cement used by barnacles has been shown to have a remarkable tensile strength of 5,000 pounds per square inch.)

Edit: See also, Biomimetic Glue, based on shellfish natural adhesive.


MedMarket Diligence tracks the technologies, clinical practices, companies, and markets associated with medical and surgical sealants and glues, with the most recent coverage in, “Worldwide Markets for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022,” (report #S290).

Factors Affecting Wound Healing

Excerpted from, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World”, Report #S251.

A delicate physiological balance must be maintained during the healing process to ensure timely repair or regeneration of damaged tissue. Wounds may fail to heal or have a greatly increased healing time when unfavorable conditions are allowed to persist. An optimal environment must be provided to support the essential biochemical and cellular activities required for efficient wound healing and to remove or protect the wound from factors that impede the healing process.

Factors affecting wound healing may be considered in one of two categories depending on their source. Extrinsic factors impinge on the patient from the external environment, whereas intrinsic factors directly affect the performance of bodily functions through the patient’s own physiology or condition.

Preparation of the wound bed (WBP) is essential for the support of efficient and effective healing, especially when advanced wound care products are to be used. WBP involves removing localized barriers to healing, such as exudate, dead tissue or infected tissue.

Wound Bed Preparation: the TIME and DIMES acronyms

WBP involves debridement, reduction and neutralization of the bioburden and management of exudate from the wound. The TIME acronym provides a systematic way to manage wounds by looking at each stage of wound healing. The goal is to have the best, thoroughly-vascularized wound bed possible.

TIME stands for:

  • T: Tissue, non-viable or deficient.

The wound care professional should look for non-viable tissue, which includes necrotic tissue, tissue which has sloughed off, or non-viable tendon or bone.

  • I: Infection or Inflammation

Examine the wound for infection, inflammation or other signs of infection. Are there clinical signs that there may be a problem with bacterial bioburden?

  • M: Moisture Balance

Is the wound too dry, or does it have excess exudate?

What is the objective of topical therapy: absorption or drainage?

  • E: Edge of wound—non-advancing or undermined

Examine the edges of the wound. Are the edges undermined, or is the epidermis failing to migrate across the granulation tissue?

The DIMES acronym is very similar to TIME:

  • Debridement (autolytic)

For wounds with the ability to heal, adequate and repeated debridement is an important first step in removing necrotic tissue. Debridement may also help healing by removing both senescent cells that are no longer capable of normal cellular activities and biofilms that may be shielding bacterial colonies.

  • Infection/Inflammation

The level of bacterial damage may include contamination (organisms present), colonization (organisms present which may cause surface damage if critically colonized) or infection. Treatment needs to make a match between the individual patient’s wound and the appropriate product.

  • Moisture balance

Clinicians need to create a careful balance in the wound such that the environment is neither too wet nor too dry. The environment itself will change as the wound heals.

  • Edge/Environment

The clinician should carefully examine and monitor the wound edge. If the wound edge is not migrating after appropriate wound bed preparation, and if healing appears to be stalled, then more advanced wound care therapies should be considered.

  • Supportive Products and Services

There are additional products which support wound healing yet don’t fall into one of these steps. For example, proper nutritional support is important to achieving the goal of a fully healed wound.

Extrinsic Factors

Extrinsic factors affecting wound healing include:

  • Mechanical stress
  • Debris
  • Temperature
  • Desiccation and maceration
  • Infection
  • Chemical stress
  • Medications
  • Other factors such as alcohol abuse, smoking, and radiation therapy

Mechanical Stress

Mechanical stress factors include pressure, shear, and friction. Pressure can result from immobility, such as experienced by a bed- or chair-bound patient, or local pressures generated by a cast or poorly fitting shoe on a diabetic foot. When pressure is applied to an area for sufficient time and duration, blood flow to the area is compromised and healing cannot take place. Shear forces may occlude blood vessels, and disrupt or damage granulation tissue. Friction wears away newly formed epithelium or granulation tissue and may return the wound to the inflammatory phase.

Debris

Debris, such as necrotic tissue or foreign material, must be removed from the wound site in order to allow the wound to progress from the inflammatory stage to the proliferative stage of healing. Necrotic debris includes eschar and slough. The removal of necrotic tissue is called debridement and may be accomplished by mechanical, chemical, autolytic, or surgical means. Foreign material may include sutures, dressing residues, fibers shed by dressings, and foreign material which were introduced during the wounding process, such as dirt or glass.

Temperature

Temperature controls the rate of chemical and enzymatic processes occurring within the wound and the metabolism of cells and tissue engaged in the repair process. Frequent dressing changes or wound cleansing with room temperature solutions may reduce wound temperature, often requiring several hours for recovery to physiological levels. Thus, wound dressings that promote a “cooling” effect, while they may help to decrease pain, may not support wound repair.

Desiccation and Maceration

Desiccation of the wound surface removes the physiological fluids that support wound healing activity. Dry wounds are more painful, itchy, and produce scab material in an attempt to reduce fluid loss. Cell proliferation, leukocyte activity, wound contraction, and revascularization are all reduced in a dry environment. Epithelialization is drastically slowed in the presence of scab tissue that forces epithelial cells to burrow rather than freely migrate over granulation tissue. Advanced wound dressings provide protection against desiccation.

Maceration resulting from prolonged exposure to moisture may occur from incontinence, sweat accumulation, or excess exudates. Maceration can lead to enlargement of the wound, increased susceptibility to mechanical forces, and infection. Advanced wound products are designed to remove sources of moisture, manage wound exudates, and protect skin at the edges of the wound from exposure to exudates, incontinence, or perspiration.

Infection

Infection at the wound site will ensure that the healing process remains in the inflammatory phase. Pathogenic microbes in the wound compete with macrophages and fibroblasts for limited resources and may cause further necrosis in the wound bed. Serious wound infection can lead to sepsis and death. While all ulcers are considered contaminated, the diagnosis of infection is made when the wound culture demonstrates bacterial counts in excess of 105 microorganisms per gram of tissue. The clinical signs of wound infection are erythema, heat, local swelling, and pain.

Chemical Stress

Chemical stress is often applied to the wound through the use of antiseptics and cleansing agents. Routine, prolonged use of iodine, peroxide, chlorhexidine, alcohol, and acetic acid has been shown to damage cells and tissue involved in wound repair. Their use is now primarily limited to those wounds and circumstances when infection risk is high. The use of such products is rapidly discontinued in favor of using less cytotoxic agents, such as saline and nonionic surfactants.

Medication

Medication may have significant effects on the phases of wound healing. Anti-inflammatory drugs such as steroids and non-steroidal anti-inflammatory drugs may reduce the inflammatory response necessary to prepare the wound bed for granulation. Chemotherapeutic agents affect the function of normal cells as well as their target tumor tissue; their effects include reduction in the inflammatory response, suppression of protein synthesis, and inhibition of cell reproduction. Immunosuppressive drugs reduce WBC counts, reducing inflammatory activities and increasing the risk of wound infection.

Other Extrinsic Factors

Other extrinsic factors that may affect wound healing include alcohol abuse, smoking, and radiation therapy. Alcohol abuse and smoking interfere with body’s defense system, and side effects from radiation treatments include specific disruptions to the immune system, including suppression of leukocyte production that increases the risk of infection in ulcers. Radiation for treatment of cancer causes secondary complications to the skin and underlying tissue. Early signs of radiation side effects include acute inflammation, exudation, and scabbing. Later signs, which may appear four to six months after radiation, include woody, fibrous, and edematous skin. Advanced radiated skin appearances can include avascular tissue and ulcerations in the circumscribed area of the original radiation. The radiated wound may not become evident until as long as 10-20 years after the end of therapy.

Intrinsic Factors

Intrinsic factors that directly affect the performance of healing are:

  • Health status
  • Age factors
  • Body build
  • Nutritional status

Health Status

Chronic diseases, such as circulatory conditions, anemias and autoimmune diseases, influence the healing process as a result of their influence on a number of bodily functions. Illnesses that cause the most significant problems include diabetes, chronic obstructive pulmonary disease (COPD), arteriosclerosis, peripheral vascular disease (PVD), heart disease, and any conditions leading to hypotension, hypovolemia, edema, and anemia. While chronic diseases are more frequent in the elderly, wound healing will be delayed in any patient with a pre-existing underlying illness.

Chronic circulatory diseases which reduce blood flow, such as arterial or venous insufficiency, lower the amount of oxygen available for normal tissue activity and replacement. Anemias such as sickle-cell anemia result in reduced delivery of oxygen to tissues and decreased ability to support wound healing.

Normal immune function is required during the inflammatory phase by providing the WBCs (white blood cells) that orchestrate or coordinate the normal sequence of events in wound healing. Autoimmune diseases such as lupus and rheumatoid arthritis interfere with normal collagen deposition, and impair granulation.

Diabetes is associated with delayed cellular response to injury, compromised cellular function at the site of injury, defects in collagen synthesis, and reduced wound tensile strength after healing. Diabetes-related peripheral neuropathy (DPN), which reduces the ability to feel pressure or pain, contributes to a tendency to ignore pressure points and avoid pressure relief strategies.

Acquired Immune Deficiency Syndrome

Patients with acquired immunodeficiency syndrome (AIDS) have significant impact on the wound healing market as their numbers rise and their average life expectancy increases. Patients in the latter stages of the disease experience drastic reductions in mobility, activity, and nutritional status, placing them at high risk for the development of pressure ulcers. Minor scrapes or abrasions are at high risk for infection and may progress to full-thickness wounds requiring antibiotic therapy and aggressive wound management. Skin tumors, such as Kaposi’s sarcoma, lead to surgical incisions closed by secondary intention requiring the use of appropriate dressings.

The skin of AIDS patients becomes drier as the syndrome progresses. As the CD4+ T cell count falls below 400/mm3, pruritus increases and erythematous patches appear on the skin, progressing to ichthyosis and appearing as large polygonal scales, especially on the lower limbs. Histological changes include hyperkeratosis and thinning of the granular layer of the epidermis. As skin becomes more fragile, care must be exercised in the selection of tapes and adhesive dressings to avoid skin stripping and skin tears.

Age Factors

Observable changes in wound healing in the elderly include increased time to heal and the fragile structure of healed wounds. Delays are speculated to be the result of a general slowing of metabolism and structural changes in the skin of elderly people. Structural changes include a flattening of the dermal-epidermal junction that often leads to skin tears, reduced quality and quantity of collagen, reduced padding over bony prominences, and reduction in the intensity of the immune response.

Body Build

Body build can affect the delivery and availability of oxygen and nutrients at the wound site. Underweight individuals may lack the necessary energy and protein reserves to provide sufficient raw materials for proliferative wound healing. Bony prominences lack padding and become readily susceptible to pressure due to the reduced blood supply of wounds associated with bony prominences. Poor nutritional habits and reduced mobility of overweight individuals lead to increased risk of wound dehiscence, hernia formation, and infection.

Nutritional Status

Healing wounds, especially full-thickness wounds, require an adequate supply of nutrients. Wounds require calories, fats, proteins, vitamins and minerals, and adequate fluid intake. Calories provide energy for all cellular activity, and when in short supply in the diet, the body will utilize stored fat and protein. The metabolism of these stored substances causes a reduction in weight and changes in pressure distribution through reduction of adipose and muscle padding. Sufficient dietary calories maintain padding and ensure that dietary protein and fats are available for use in wound healing. In addition, adequate levels of protein are necessary for repair and replacement of tissue. Increased protein intake is particularly important for wounds where there is significant tissue loss requiring the production of large amounts of connective tissue. Protein deficiencies have been associated with poor revascularization, decreased fibroblast proliferation, reduced collagen formation, and immune system deficiencies.

Reduced availability of vitamins, minerals, and trace elements will also affect wound healing. Vitamin C is required for collagen synthesis, fibroblast functions, and the immune response. Vitamin A aids macrophage mobility and epithelialization. Vitamin B complex is necessary for the formation of antibodies and WBCs, and Vitamin B or thiamine maintains metabolic pathways that generate energy required for cell reproduction and migration during granulation and epithelialization. Iron is required for the synthesis of hemoglobin, which carries oxygen to the tissues, and copper and zinc play a role in collagen synthesis and epithelialization.

Adequate nutrition is an often-overlooked requirement for normal wound healing. Inadequate protein-calorie nutrition, even after just a few days of starvation, can impair normal wound-healing mechanisms. For healthy adults, daily nutritional requirements are approximately 1.25-1.5 g of protein per kilogram of body weight and 30-35 calories/kg.  These requirements should be increased for those with sizable wounds.

Malnutrition should be suspected in patients presenting with chronic illnesses, inadequate societal support, multisystem trauma, or GI or neurologic problems that may impair oral intake. Protein deficiency occurs in about 25% of all hospitalized patients.

Chronic malnutrition can be diagnosed by using anthropometric data to compare actual and ideal body weights and by observing low serum albumin levels. Serum prealbumin is sensitive for relatively acute malnutrition because its half-life is 2-3 days (vs 21 d for albumin). A serum prealbumin level of less than 7 g/dL suggests severe protein-calorie malnutrition.

Vitamin and mineral deficiencies also require correction. Vitamin A deficiency reduces fibronectin on the wound surface, reducing cell chemotaxis, adhesion, and tissue repair. Vitamin C is required for the hydroxylation of proline and subsequent collagen synthesis.

Vitamin E, a fat-soluble antioxidant, accumulates in cell membranes, where it protects polyunsaturated fatty acids from oxidation by free radicals, stabilizes lysosomes, and inhibits collagen synthesis. Vitamin E inhibits prostaglandin synthesis by interfering with phospholipase-A2 activity and is therefore anti-inflammatory. Vitamin E supplementation may decrease scar formation.

Zinc is a component of approximately 200 enzymes in the human body, including DNA polymerase, which is required for cell proliferation, and superoxide dismutase, which scavenges superoxide radicals produced by leukocytes during debridement.


From, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World”. Report #S251. Available online.

Investment in medtech and biotech: Outlook

Medtech and biotech investment is driven by an expectation of returns, but rapid advances in technology simultaneously drive excitement for their application while increasing the uncertainty in what is needed to bring those applications in the market.

MedMarket Diligence has tracked technology developments and trends in advanced medical technologies, inclusive of medical devices and the range of other technologies — in biotech, pharma, others — that impact, drive, limit, or otherwise affect markets for the management of disease and trauma. This broader perspective on new developments and a deeper understanding of their limitations is important for a couple of reasons:

  1. Healthcare systems and payers are demanding competitive cost and outcomes for specific patient populations, irrespective of technology type — it’s the endpoint that matters. This forces medical devices into de facto competition with biotech, pharma, and others.
  2. Medical devices are becoming increasingly intelligent medical devices, combining “smart” components, human-device interfaces, integration of AI in product development and products.
  3. Medical devices are rarely just “medical devices” anymore, often integrating embedded drugs, bioresorable materials, cell therapy components, etc.
  4. Many new technologies have dramatically pushed the boundaries on what medicine can potentially accomplish, from the personalized medicine enabled by genomics, these advances have served to create bigger gaps between scientific advance and commercial reality, demanding deeper understanding of the science.

The rapid pace of technology development across all these sectors and the increasing complexity of the underlying science are factors complicating the development, regulatory approval, and market introduction of advanced technologies. The unexpected size and number of the hurdles to bring these complex technologies to the market have been responsible for investment failures, such as:

  • Theranos. Investors were too ready to believe the disruptive ideas of its founder, Elizabeth Holmes. When it became clear that data did not support the technology, the value of the company plummeted.
  • Juno Therapeutics. The Seattle-based gene therapy company lost substantial share value after three patients died on a clinical trial for the company’s cell therapy treatments that were just months away from receiving regulatory approval in the US.
  • A ZS Associates study in 2016 showed that 81% of medtech companies struggle to receive an adequate return on investment

As a result, investment in biotech took a correctional hit in 2016 to deflate overblown expectations. Medtech, for its part, has seen declining investment, especially at early stages, reflecting an aversion to uncertainty in commercialization.

Below are clinical and technology areas that we see demonstrating growth and investment opportunity, but still represent challenges for executives to navigate their remaining development and commercialization obstacles:

  • Cell therapies
    • Parkinson’s disease
    • Type I diabetes
    • Arthritis
    • Burn victims
    • Cardiovascular diseases
  • Diabetes
    • Artificial pancreas
    • Non-invasive blood glucose measurement
  • Tissue engineering and regeneration
    • 3D printed organs
  • Brain-computer and other nervous system interfaces
    • Nerve-responsive prosthetics
    • Interfaces for patients with locked-in syndrome to communicate
    • Interfaces to enable (e.g., Stentrode) paralyzed patients to control devices
  • Robotics
    • Robotics in surgery (advancing, despite costs)
    • Robotic nurses
  • Optogenetics: light modulated nerve cells and neural circuits
  • Gene therapy
    • CRISPR
  • Localized drug delivery
  • Immuno-oncology
    • Further accelerated by genomics and computational approaches
    • Immune modulators, vaccines, adoptive cell therapies (e.g., CAR-T)
  • Drug development
    • Computational approaches to accelerate the evaluation of drug candidates
    • Organ-on-a-chip technologies to decrease the cost of drug testing

Impact on investment

  • Seed stage and Series A investment in med tech is down, reflecting an aversion to early stage uncertainty.
  • Acquisitions of early stage companies, by contrast, are up, reflecting acquiring companies to gain more control over the uncertainty
  • Need for critical insight and data to ensure patient outcomes at best costs
  • Costs of development, combined with uncertainty, demand that if the idea’s upside potential is only $10 million, then it’s time to find another idea
  • While better analysis of the hurdles to commercialization of advanced innovations will support investment, many medtech and biotech companies may opt instead for growth of established technologies into emerging markets, where the uncertainty is not science-based

 

Below is illustrated the fundings by category in 2015 and 2016, which showed a consistent drop from 2015 to 2016, driven by a widely acknowledged correction in biotech investment in 2016.

*For the sake of comparing other segments, the wound fundings above exclude the $1.8 billion IPO of Convatec in 2016.

Source: Compiled by MedMarket Diligence, LLC.

 

Forgotten Opportunities: Early Stage Biotech and Medtech Investment

Due to the uncertainty in the development, clinical testing, and regulatory approval of both biotech and medical technologies, which increasingly have to be viewed with the same competitive lens, investors have over the past few years shied away from seed stage or Series A stage company investment in favor of those nearer to market introduction. However, with the advent of a great number of new technologies and advances in the underlying science, there is enormous opportunity to identify companies and emerging sectors arising from these advances. The problem in identifying realistically promising companies is that it must be done so without falling prey to the bad investment practices in the past that ensued from a poor understanding of the technologies and their remaining commercial hurdles. Without careful consideration of remaining scientific development needed, the product’s target market, its competitors, and the sum total of the company’s capabilities to commercialize these technologies, investment in these areas will fall short of investment objectives or fail them outright.

While any of these considerations have the capacity to preempt a successful market introduction, a failure to understand the science behind the product and its remaining development hurdles to commercialization is likely to be the biggest cause of failure.

“We’ve already had one glaring example of a company, and its investors, learning the hard way that health and science advisors are important: Theranos.” (link)

Venture Capital has backed away from early stage investment

Earlier stage investment, with its higher risk, has higher potential reward, so there is a big need for more effective evaluation of potential early stage investments in order to (1) seize these opportunities that will otherwise potentially be lost with the shift to later stage fundings, (2) sort out those companies/technologies with overwhelming commercialization hurdles from those that will profitably tap an opportunity, and (3) gain the value of these opportunities before the innovation appreciates in value, driving up the price of the investment.

The Biotech Bubble

Biotech in the 1980s was enamored with companies pursuing “magic bullets” — technologies that had the potential to cure cancer or heart disease or other conditions with large, untapped or under-treated populations. With few exceptions, these all-in-one-basket efforts were only able achieve a measure of humility in the VCs who had poured volumes of money into them.

Here was evidenced a fundamental problem with biotech at a time when true scientific milestones were being reached, including successes in mapping the human genome: Landmark scientific milestones do not equate with commercial success.

As a result, money fled from biotech as few products could make it to market due to persistent development and FDA hurdles. By the late 1980s, many biotechs saw three quarters of their value disappear.

A Renewed Bubble?

The status of biomedical science and technology, with multiple synergistic developments, will lead to wild speculation and investment, potentially leading to yet another investment bubble. However, there will be advances that can point to real timelines for market introduction that will support investment.

Recent advances, developments and trends supporting emerging therapeutics

  1. Stem cells. A double-edged sword in that these do represent some the biggest therapeutics that will emerge, yet caution is advised since the mechanisms to control stem cells are not always sufficient to prevent their nasty tendency to become carcinogenic.
  2. Drug discovery models, such as using human “organoids” and other cell-based models to test or screen new drugs.
  3. Systems to accelerate the rapid evaluation of hundreds, perhaps, thousands of potential drugs before moving to animal models or preclinicals.
    1. Machine-learning algorithms
    2. Cell/tissue/organ models
    3. Meta-analysis, the practice of analyzing multiple, independently produced clinical data to draw conclusions from the broader dataset.
  4. Cross-discipline science
    1. cell biologists, immunologists, molecular biologists and others have a better understanding of pathology and therapeutics as a result of information sharing; plus BIG DATA (e.g., as part of the “Cancer Moonshot”). Thought leaders have called for collection and harnessing of patient data on a large scale and centralized for use in evaluating treatments for specific patients and cancer types.
    2. Artificial intelligence applied to diagnosis and prescribed therapeutics (e.g., IBM Watson).
    3. Examples of resulting therapies, at a minimum, include multimodal treatment – e.g., radiotherapy and immunotherapy – but more often may be represented in considerably more backend research and testing to identify and develop products with greater specificity, greater efficacy, and lowered risk of complications.
  5. Materials science developments, selected examples:
    1. Scaffolds in tissue engineering
    2. Microgels
    3. Graphene
    4. Polyhedral boranes
    5. Nanometric imprinting on fiber
    6. Knitted muscles to provide power link
    7. 3-D printed skin and more complex organs to come
    8. Orthopedic scaffolds made from electrospun nanofibers
  6. CAR-T (chimeric antigen receptor T cell therapy)
  7. CRISPR/Cas-9. Gene editing
    1. Removal, insertion of individual genes responsible for disease
    2. Potential use for creating chimeras of human and other (e.g., pig) species in order to, for example, use pigs for growing human organs for transplant.
  8. Smart devices: smart biopsy needles, surgical probes to detect cancer margins, artificial pancreas. Devices using information

 

We sum this up with these prerequisites for investment:

Prerequisites for Early Stage Med/Bio Investment

  1. A fully understood and managed gap between scientific advance and commercial reality.
    1. Investment must be tied to specific steps (prototyping, preclinicals, clinicals, physician training, etc.).
  2. A management team qualified in commercializing medtech or biotech products.
    1. CEOs (and/or Chief Medical Officers, Chief Scientific Officers) with medical science backgrounds (MD, PhD) favored over CPAs or even JDs.
  3. Reimbursement strategy pursued as something more than an afterthought
  4. Technology development in sync with end-user acceptance and training to leverage the benefits:
    1. Easier to use
    2. Fewer complications
    3. Attractive physician revenue streams
  5. Broad competitive advantage pursued:
    1. Product benefits must stand up against all competition, irrespective of technology type (devices competing with drugs, biotech).
    2. Benefits of reducing the cost of care for an existing patient population are paramount.
    3. Competitive advantage must consider the trend in technology development to avoid being disrupted by other products soon to reach the market.
  6. Predefined exit strategy; selected examples:
    1. Positioning to add innovation to a mid-cap or large-cap medtech or biotech as acquirers.
    2. Development of platform technologies for licensing or sale.
    3. IPO

 

Future investments are likely to track the historical focus on specific diseases and conditions:

Source: MedMarket Diligence, LLC and Emerging Therapeutic Company Investment and Deal Trends; Biotechnology Innovation Organization.


MedMarket Diligence, mediligence.com, tracks medical and biotechnology development to provide meaningful insights for manufacturers, investors, and other stakeholders.

High strength medical and surgical glues, growth to 2022

High strength medical and surgical glues currently command a $1.2 billion market that will grow to $1.7 billion by 2022, representing a 6.4% compound annual growth rate. More importantly, however, is that during this time frame the market will undergo steady shifts, including the regional representation, with growth slowing in western markets relative to Asia-Pacific and the rest of the world.

Below is illustrated the size versus growth of high strength glues in the U.S., Western Europe, Asia-Pacific and Rest of World.

Source: MedMarket Diligence, LLC; Report #S290. Order online.

The resulting differential growth over this period will result in a shift in the regional market balance, as shown below.

Source: MedMarket Diligence, LLC; Report #S290. Order online.

Source: MedMarket Diligence, LLC; Report #S290. Order online.

The best medtech investment opportunities

In reviewing patents, fundings, technology development trends, market development, and other hard data sources, we feel these are some of the strongest areas for investment in not only the medical device side of medtech, but also the broader biomedical technology arena:

  • Materials technologies
    • graphene
    • bioresorbables
    • biosensors
    • polymers
    • bioadhesives
  • Cell therapy and tissue engineering
    • cell-based treatments (diabetes, spinal cord injury, traumatic brain injury)
    • extracellular matrices in soft tissue repair and regeneration
  • Nanotechnology (subject of forthcoming report)
    • nano coatings
    • nano- and micromedical technologies for localized drug delivery
    • nanoparticles
  • 3D printing
    • prototype development
    • patient-specific implants
  • Minimally- and non-invasive technologies
    • transcatheter alternatives to surgery
    • NOTES (natural orifice transluminal endoscopic surgery)
  • Diabetes non-invasive glucose testing
  • Intraoperative surgical guidance
    • Cancer probes (e.g., fluorescent or optical coherence tomography, frozen section, cytologic imprint analysis, ultrasound, micro-computed tomography, near-infrared imaging, and spectroscopy)
  • neurostimulation and neuromodulation
  • point-of-care diagnostics
  • point-of-care imaging
  • AI-enhanced devices

In addition, there are many areas in healthcare in which there is much untapped demand with problems that, so far, seem to have eluded medtech solutions. These include infection control (Zika, MRSA, TB, nosocomial infections, etc.), chronic wound treatment (including decubitus/stasis/diabetic ulcers), type 2 diabetes and obesity.

 

Wound Hemostasis, Closure, and Sealing in the U.S. versus Asia/Pacific, 2015-2022

Sales of sealants, glues, and hemostats projected to 2022 for the U.S. and Asia/Pacific. While these products have had tremendous success in Japan, their sales in the rest of Asia/Pacific have not yet caught up to Japan, let alone to the U.S.

But that is expected to change as the most significant growth in these markets will indeed be coming from China, Korea, Australia, India, and elsewhere in these emerging markets.

Sales of Sealants, Glues, and Hemostats in the
U.S. and Asia/Pacific Markets, 2015-2022

Note: For direct comparative purposes, sales in these markets are shown on the same vertical scale.

Source: MedMarket Diligence, LLC; Report #S290. Available for purchase/download online.

Medical and Surgical Sealants, Glues, and Hemostats, to 2022

There are several different classes of surgical sealants, glues and hemostatic products used to prevent or stop bleeding, or to close a wound or reinforce a suture line. These include fibrin sealants, surgical sealants, mechanical hemostats, active hemostats, flowable hemostats, and glues. Both sealants and medical glues are increasingly used either as an adjunct to sutures or to replace sutures.

Medical Sealants

Fibrin sealants are made of a combination of thrombin and fibrinogen. These sealants may be sprayed on the bleeding surface, or applied using a patch. Surgical sealants might be made of glutaraldehyde and bovine serum albumin, polyethylene glycol polymers, and cyanoacrylates.

Sealants are most often used to stop bleeding over a large area. If the surgeon wishes to fasten down a flap without using sutures, or in addition to using sutures, then the product used is usually a medical glue.

Source: MedMarket Diligence, LLC; Report #S290.

Hemostatic Products

The surgeon and the perioperative nurse have a variety of hemostats from which to choose, as they are not all alike in their applications and efficacy. Selection of the most appropriate hemostat requires training and experience, and can affect the clinical outcome, as well as decrease treatment costs. Some of the factors that enter into the decision-making process include the size of the wound, the amount of hemorrhaging, potential adverse effects, whether the procedure is MIS or open surgery, and others.

Active hemostats contain thrombin products which may be derived from several sources, such as bovine pooled plasma purification, human pooled plasma purification, or through human recombinant manufacturing processes. Flowable-type hemostats are made of a granular bovine or porcine gelatin that is combined with saline or reconstituted thrombin, forming a flowable putty that may be applied to the bleeding area.
Mechanical hemostats, such as absorbable gelatin sponge, collagen, cellulose, or polysaccharide-based hemostats applied as sponges, fleeces, bandages, or microspheres, are not included in this analysis.

Source: MedMarket Diligence, LLC; Report #S290.

Medical Glues

Sealants and glues are terms which are often used interchangeably, which can be confusing. In this report, a medical glue is defined as a product used to bond two surfaces together securely. Surgeons are increasingly reaching for medical glues to either help secure a suture line, or to replace sutures entirely in the repair of soft tissues. Medical glues are also utilized in repairing bone fractures, especially for highly comminuted fractures that often involve many small fragments. This helps to spread out the force-bearing surface, rather than focusing weight-bearing on spots where a pin has been inserted.

Thus, the surgeon has a fairly wide array of products from which to choose. The choice of which surgical hemostat or sealant to use depends on several factors, including the procedure being conducted, the type of bleeding, severity of the hemorrhage, the surgeon’s experience with the products, the surgeon’s preference, the price of the product and availability at the time of surgery. For example, a product which has a long shelf life and does not require refrigeration or other special storage, and which requires no special preparation, usually holds advantages over a product which must be mixed before use, or held in a refrigerator during storage, then allowed to warm up to room temperature before use.

Source: MedMarket Diligence, LLC; Report #S290.


From “Worldwide Market for Medical and Surgical Sealants, Glues, and Hemostats, 2015-2022.” See details at link. Order online.

Hemostat Sales to 2022

Owing to their ease of use, ease of handling, and general clinical utility, hemostat sales will almost double worldwide between 2016 and 2022:

Source: MedMarket Diligence, LLC; Report #S290. Order online.

Hemostat sales are exceptionally strong in the well developed economies (Japan, Australia, Korea) of Asia, and will continue to expand there with the rapidly growing contribution of China’s hemostat sales.

Source: MedMarket Diligence, LLC; Report #S290. Order online.

[icegram campaigns=”9993″]