Wound healing factors; Growth in peripheral stenting; Nanomed applications

From our weekly email to blog subscribers…

Extrinsic Factors Affecting Wound Healing

From Report #S251, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World.”

Extrinsic factors affecting wound healing include:

Mechanical stress
Debris
Temperature
Desiccation and maceration
Infection
Chemical stress
Medications
Other factors

Mechanical stress factors include pressure, shear, and friction. Pressure can result from immobility, such as experienced by a bed- or chair-bound patient, or local pressures generated by a cast or poorly fitting shoe on a diabetic foot. When pressure is applied to an area for sufficient time and duration, blood flow to the area is compromised and healing cannot take place. Shear forces may occlude blood vessels, and disrupt or damage granulation tissue. Friction wears away newly formed epithelium or granulation tissue and may return the wound to the inflammatory phase.

Debris, such as necrotic tissue or foreign material, must be removed from the wound site in order to allow the wound to progress from the inflammatory stage to the proliferative stage of healing. Necrotic debris includes eschar and slough. The removal of necrotic tissue is called debridement and may be accomplished by mechanical, chemical, autolytic, or surgical means. Foreign material may include sutures, dressing residues, fibers shed by dressings, and foreign material which were introduced during the wounding process, such as dirt or glass.

Temperature controls the rate of chemical and enzymatic processes occurring within the wound and the metabolism of cells and tissue engaged in the repair process. Frequent dressing changes or wound cleansing with room temperature solutions may reduce wound temperature, often requiring several hours for recovery to physiological levels. Thus, wound dressings that promote a “cooling” effect, while they may help to decrease pain, may not support wound repair.

Desiccation of the wound surface removes the physiological fluids that support wound healing activity. Dry wounds are more painful, itchy, and produce scab material in an attempt to reduce fluid loss. Cell proliferation, leukocyte activity, wound contraction, and revascularization are all reduced in a dry environment. Epithelialization is drastically slowed in the presence of scab tissue that forces epithelial cells to burrow rather than freely migrate over granulation tissue. Advanced wound dressings provide protection against desiccation.

Maceration resulting from prolonged exposure to moisture may occur from incontinence, sweat accumulation, or excess exudates. Maceration can lead to enlargement of the wound, increased susceptibility to mechanical forces, and infection. Advanced wound products are designed to remove sources of moisture, manage wound exudates, and protect skin at the edges of the wound from exposure to exudates, incontinence, or perspiration.

Infection at the wound site will ensure that the healing process remains in the inflammatory phase. Pathogenic microbes in the wound compete with macrophages and fibroblasts for limited resources and may cause further necrosis in the wound bed. Serious wound infection can lead to sepsis and death. While all ulcers are considered contaminated, the diagnosis of infection is made when the wound culture demonstrates bacterial counts in excess of 105 microorganisms per gram of tissue. The clinical signs of wound infection are erythema, heat, local swelling, and pain.

Chemical stress is often applied to the wound through the use of antiseptics and cleansing agents. Routine, prolonged use of iodine, peroxide, chlorhexidine, alcohol, and acetic acid has been shown to damage cells and tissue involved in wound repair. Their use is now primarily limited to those wounds and circumstances when infection risk is high. The use of such products is rapidly discontinued in favor of using less cytotoxic agents, such as saline and nonionic surfactants.

Medication may have significant effects on the phases of wound healing. Anti-inflammatory drugs such as steroids and non-steroidal anti-inflammatory drugs may reduce the inflammatory response necessary to prepare the wound bed for granulation. Chemotherapeutic agents affect the function of normal cells as well as their target tumor tissue; their effects include reduction in the inflammatory response, suppression of protein synthesis, and inhibition of cell reproduction. Immunosuppressive drugs reduce WBC counts, reducing inflammatory activities and increasing the risk of wound infection.

Other extrinsic factors that may affect wound healing include alcohol abuse, smoking, and radiation therapy. Alcohol abuse and smoking interfere with body’s defense system, and side effects from radiation treatments include specific disruptions to the immune system, including suppression of leukocyte production that increases the risk of infection in ulcers. Radiation for treatment of cancer causes secondary complications to the skin and underlying tissue. Early signs of radiation side effects include acute inflammation, exudation, and scabbing. Later signs, which may appear four to six months after radiation, include woody, fibrous, and edematous skin. Advanced radiated skin appearances can include avascular tissue and ulcerations in the circumscribed area of the original radiation. The radiated wound may not become evident until as long as 10-20 years after the end of therapy.

Source: “Wound Management to 2024”, Report #S251.


Screen Shot 2016-05-22 at 8.35.06 PM

Source: “Global Market Opportunities in Peripheral Arterial and Venous Stents, Forecast to 2020”, Report #V201.


Selected Therapeutic and Diagnostic Applications of Nanotechnology in Medicine

Below are selected applications for neuromedical technologies in development or on the market currently.

Drug Delivery
Chemotherapy drug delivery
Magnetic nanoparticles attached to cancer cells
Nanoparticles carrying drugs to arterial wall plaques
Therapeutic magnetic carriers (TMMC) [guided using magnetic resonance navigation, or MRN]

Drugs and Therapies
Diabetes
Combatting antimicrobial resistance
Alzheimer’s Disease
Infectious Disease
Arthritis

Tissue, cell and genetic engineering involving nanomedical tools
Nanomedical tools in gene therapy for inherited diseases
Artificial kidney
ACL replacements
Ophthalmology
Implanted nanodevices for alleviation of pain

Biomaterials 

Nanomedicine and Personalized Treatments

Source: Report #T650, “Global Nanomedical Technologies, Markets and Opportunities, 2016-2021”. Report #T650.

Wound management regional growth (“rest of north america”)

Screen Shot 2016-04-07 at 9.54.16 AM

From Report S251 (see global analysis and the above detail for Americas (with detail for U.S., Rest of North America and Latin America), Europe (United Kingdom, Germany, France, Spain, Italy, and Rest of Europe), Asia/Pacific (Japan, Korea, and Rest of Asia/Pacific) and Rest of World.

Do you wish to see excerpts from “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets”?

The future (of medicine) is biology

It was once quite convenient for manufacturers of deluxe medical widgets to worry only about other manufacturers of deluxe medical widgets. Manufacturers must now widen their perspective to consider current and future competition (and opportunity) from whatever direction it may come. –> Just thought I might chime in and suggest that, if you do make such widgets, it might be a good idea to maybe throw at least an occasional sidelong glance at biotech. (Most of you are, great, but some of you think biotech is too far away to compete…)

Organ Bioengineering is years away and poses little challenge to medical devices …FALSE.  Urinary bladders have been engineered for pediatric applications. Bioengineered skin (the “integumentary” organ) is now routinely bioengineered for burns, chronic wounds, and other wound types. Across a wide range of tissue types (bone, cardiac, smooth muscle, dermal, etc.) scientists — clinicians — have rapidly developed technologies to direct the construction and reconstruction of these tissues and restore their structure and function.

Cell Biology. Of course cells are engineered into tissues as part of the science of tissue engineering, but combine this with advances in engineering not just between cells but between cells AND within cells and (…sound of my head exploding). With the sum of the understanding and capacity to control we have gained over cellular processes over the past few decades now rapidly accelerating, medical science is fast approaching the point at which it can dictate outcomes for cell, tissues, organs, organ systems, and humans (I am not frightened, but excited, with caution).  Our understanding and proficiency gained in manipulating processes from cell division to pluripotency to differentiation to senescence to death OR NOT has profound consequences for fatal, debilitating, incurable, devastating, costly, and nearly every other negative superlative you can conceive.

CRISPR*: This is a new, relatively simple, but extraordinary tool allowing researchers or, more importantly, physicians to potentially swap out defective genes with healthy ones. See Nature.
(* clustered regularly interspersed short palindromic repeats)

Biotech has, over its history, often succeeded in getting attention, but has had less success justifying it, leaving investors rudely awakened to its complexities.  It has continued, however, to achieve legitimately exciting medical therapeutic advances, if only as stepping stones in the right direction, like mapping the human genome, the development of polymerase chain reaction (“PCR”), and biotech-driven advances in molecular biology, immunology, gene therapy, and others, with applications ripe for exploitation in many clinical specialties, Sadly, the agonizing delay between advanced and “available now” has typically disappointed manufacturers, investors, clinicians and patients alike. CRISPR and other tools already available (see Genetic Engineering News and others) are poised to increase the expectations – and the pace toward commercialization – in biotechnology.

Vaccines and Infectious Disease: Anyone reading this who has been under a rock for lo these many years, blissfully ignorant of SARS, Ebola, Marburg, MRSA, and many other frightening acronyms besides HIV/AIDS (more than enough for us already) should emerge and witness the plethora of risks we face (and self-inflict through neglect), any one of which might ultimately overwhelm us if not medically then economically in their impacts. But capitalists (many altruistic) and others have come to the rescue with vaccines such as for malaria and dengue-fever and, even, one for HIV that is in clinicals.

Critical Mass, Synergies, and Info Tech. Biotechnology is succeeding in raising great gobs of capital (if someone has a recommended index/database on biotech funding, let me know?).  Investors appear to be forgetful increasingly confident (in the 1990s, I saw big layoffs in biotech because of ill-advised investments, but that was then…) that their money will result in approved products with protected intellectual property and adequate reimbursement and manageable costs in order to result in attractive financials. The advances in biological and medical science alone are not enough to account for this, but such advances are almost literally being catalyzed by information technologies that make important connections faster, yielding understanding and new opportunities. The net effect of individual medically-related disciplines (commercial or academic) advancing research more efficiently as a result of info tech and info sharing/synergies between disciplines is the expected burst of medical benefits ensuing from biotech. (Take a look also at Internet of DNA.)

Bioengineered Skin & Skin Substitutes in Wound Care

Bioengineered skin was developed because of the need to cover extensive burn injuries in patients who no longer had enough skin for grafting. Not so long ago, a patient with third degree burns over 50% of his body surface usually died from his injuries. That is no longer the case. Today, even someone with 90% TBSA has a good chance of surviving. With the array of bioengineered skin and skin substitutes available today, such products are also finding use for chronic wounds, in order to prevent infection, speed healing and provide improved cosmetic results.

apligraf
Apligraf, Organogenesis

Skin used in wound care may be autograft (from the patient’s own body, as is often the case with burn patients), allograft (cadaver skin), xenogeneic (from animals such as pigs or cows), or a combination of these. Bioengineered skin substitutes are synthetic, although they, too, may be combined with other products. It consists of an outer epidermal layer and (depending on the product) a dermal layer, which are embedded into an acellular support matrix. This product may be autogenic, or from other sources. Currently most commercial bioengineered skin is sheets of cells derived from neonatal allogenic foreskin. This source is chosen for several reasons: because the cells come from healthy newborns undergoing circumcision, and therefore the tissue would have been discarded anyway; foreskin tissue is high in epidermal keratinocyte stem cells, which grow vigorously; and because allergic reactions to this tissue is uncommon.

Selected Bioengineered Skin & Skin Substitutes

bio-skin

Source: Exhibit 3-16 in MedMarket Diligence, LLC, Report #S251. To get excerpts, Click Here

Bioengineered skin displacing traditional wound management products

Very decided shifts are taking place in the wound management market as advanced wound technologies take up caseload from traditional technologies like gauze and others. It becomes evident that traditional products once representing above average sales are now projected to be below average (gauze) as are even a moderately new technology, “negative pressure wound therapy devices” (NPWD), while bioengineered skin and skin substitutes will represent “above average”.

Global Wound Management Market,
Above/Below Average Sectors, 2015 & 2024

Screen-Shot-2016-03-16-at-8.02.29-AM

Source: Report #S251.

Global Wound Management Market, Sales, 2015 & 2024

Screen Shot 2016-03-16 at 8.02.44 AM

Source: Report #S251.

Despite the tepid growth of traditional wound management products, they remain very large markets that even the most aggressively growing segments will require time to match that volume. Bioengineered skin and skin substitutes are moving fast in that direction.

Global CAGR 2016-2024 for Wound Management Segments

Screen-Shot-2016-03-16-at-8.09.10-AM

Source: Report #S251.

If you would like excerpts from this report, Click Here!

Growth in wound management from trends in prevalence, technology

Worldwide, an enormous number of wounds are driving a $15 billion market that will soon pass $20 billion. What is driving wound sales is the continued growth and prevalence of different wound types targeted by medical technologies ranging from bandages to bioengineered skin, physical systems like negative pressure wound therapy, biological growth factors, and others.

Most attention in wound management is focused on improving conventional wound healing in difficult clinical situations, especially for chronic wounds, in the expansion of wound management technologies to global markets, and in the application of advanced technologies to improve healing of acute wounds, especially surgical wounds.

Global Prevalence of Wound Types, 2015

Screen Shot 2016-03-02 at 12.18.44 PM

Source: MedMarket Diligence LLC; Report #S251. Request excerpts from this report.

Total Wound Care Market as Percent of Entire Market, 2024

Screen Shot 2016-03-02 at 12.44.46 PM

Source: MedMarket Diligence LLC; Report #S251. Request excerpts from this report.


Buy the Executive Summary for “Wound Management to 2024” (purchase price may be applied to subsequent full report purchase):

Or buy the full report:

Common Peripheral Vascular Metal Stent Designs

Conceptually, a stent’s design and architecture are based on the underlying rationale of providing adequate endoluminal scaffolding support of recanalized vascular conduit for a desired period of time, with minimally possible obstruction of normal circulatory flow and propensity to reocclusions associated with healing processes or other plausible causes. Stenting device designs also tend to reflect etiological and anatomical specifics of the targeted occlusive conditions and indications, characteristics of preferred device materials, and technical capabilities of existing manufacturing tools and technologies. 

Common Peripheral Vascular Metal Stent Designs. The vast majority of peripheral vascular stents on the market (which are usually made of metal structural materials) typically feature one of three basic designs: slotted tube, wire mesh, or flattened coil/spiral. The same basic designs are used in non-vascular metallic stents, which in many instances constitute a line extension of corresponding vascular systems.

medtronicstentsThe most popular slotted tube stents – which are cut from tubular metal structures with computer-guided laser and electropolished – are available in several design sub-types including closed-cell flexsegment, open-cell multilink and micromesh versions. Generally, all slotted tube stenting devices combine good radial strength, relatively even distribution of scaffolding support, and minimal foreshortening, and compatibility with low profile delivery systems. The closed-cell flexsegment architecture (usually featuring circumferentially distributed hexagonal, heart, or diamond-shaped cells with one or more common sides) offers enhanced scaffolding and relative lesion coverage at the expense of longitudinal flexibility and kink resistance. open-cell multilink design (with sinusoidal ring-segments and evenly spaced co-axial links/ connectors) provides significantly better longitudinal flexibility (particularly with the use of corrugated links) and more even endoluminal support which come at a price of reduced stent to lesion surface ratio and reduced radiopacity. The micromesh configuration (representing a high-density hybrid version of the close-cell flexsegment and open-cell multilink architectures, with larger number of smaller zigzag cells per ring and closely linked ring segments) approximates the advantageous features of the both designs by offering significant improvement in flexibility over the former one better stent-to-vessel/lesion ratio compared to the latter one.

The wire mesh – featuring unrestricted diamond-shaped cells formed by one or several diagonally interwoven (braided) wire filaments – is arguably the oldest type of metal stent design. High stent-to-vessel/lesion surface ratio, good conformability and even scaffolding, along with technological simplicity and relatively low manufacturing cost constitute the primary benefits of braided wire mesh stenting devices. Unfortunately, such devices are also characterized by a mediocre radial strength, very significant (up to 15%) foreshortening, and poor kink resistance, which radically undercut their utility in critical indications.

Coil or spiral stents (which could be configured as a single or double helix with a flat or flattened wire struts) theoretically offer the best combination of radial strength and longitudinal flexibility. However, spiral devices are also characterized by significant foreshortening, propensity to recoil, and uneven scaffolding support in bended or bending circulatory conduits.

Comparative Advantages and Drawbacks of Most Common Stenting Device Designs

Stent-Design-table-for-blog
Report #V201 (February 2016)

See “Global Market Opportunities in Peripheral Arterial and Venous Stents, Forecast to 2020”, Report #V201. Details.

Global Wound Management Market: Segment Size, Growth to 2024

The content of this post is drawn from the complete Report #S251, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World”. For separate coverage of wound closure-related products, see Report #S192, “Worldwide Surgical Sealants, Glues, and Wound Closure Markets, 2013-2018.”

The World Market for Wound Management Report encompasses twelve product segments:

  • Traditional Adhesive Dressings
  • Traditional Gauze Dressings
  • Traditional Non-Adherent Dressings
  • Film Dressings
  • Foam Dressings
  • Hydrogel Dressings
  • Hydrocolloid Dressings
  • Alginate Dressings
  • Antimicrobial Dressings
  • Negative Pressure Wound Therapy Devices
  • Bioengineered Skin & Skin Substitutes
  • Wound Care Growth Factors

The report examines North and South America, the European Union, Asia/Pacific and Rest of World, and looks at markets and growth rates by product and country for the years 2014-2024. The world market in 2024 for the total wound management market represented by the segments listed above is projected to be worth over $22 billion, with segments growing at widely variable rates, with lowest sales growth in traditional adhesive bandages and the highest sales growth in bioengineered skin and skin substitutes

Source: MedMarket Diligence, LLC; Report #S251.

Below are representative examples of each type of wound management product.

    
Dressing categoryProduct examplesDescriptionPotential applications
FilmHydrofilm, Release, Tegaderm, BioclusiveComes as adhesive, thin transparent polyurethane film, and as a dressing with a low adherent pad attached to the film.Clean, dry wounds, minimal exudate; also used to cover and secure underlying absorptive dressing, and on hard-to-bandage locations, such as heel.
FoamPermaFoam
PolyMem
Biatain
Polyurethane foam dressing available in sheets or in cavity filling shapes. Some foam dressing have a semipermeable, waterproof layer as the outer layer of the dressingFacilitates a moist wound environment for healing. Used to clean granulating wounds which have minimal exudate.
HydrogelHydrosorb Gel Sheet, Purilon, Aquasorb, DuoDerm, Intrasite Gel, GranugelColloids which consist of polymers that expand in water. Available in gels, sheets, hydrogel-impregnated dressings.Provides moist wound environment for cell migration, reduces pain, helps to rehydrate eschar. Used on dry, sloughy or necrotic wounds.
HydrocolloidCombiDERM, Hydrocoll, Comfeel, DuoDerm CGF Extra Thin, Granuflex, Tegasorb, Nu-DermMade of hydroactive or hydrophilic particles attached to a hydrophobic polymer. The hydrophilic particles absorb moisture from the wound, convert it to a gel at the interface with the wound. Conforms to wound surface; waterproof and bacteria proof.Gel formation at wound interface provides moist wound environment. Dry necrotic wounds, or for wounds with minimal exudate. Also used for granulating wounds.
AlginateAlgiSite, Sorbalgon Curasorb, Kaltogel, Kaltostat, SeaSorb, TegagelA natural polysaccharide derived from seaweed; available in a range of sizes, as well as in ribbons and ropes.Because highly absorbent, used for wounds with copious exudate. Can be used in rope form for packing exudative wound cavities or sinus tracts.
AntimicrobialBiatain Ag
Atrauman Ag
MediHoney
Both silver and honey are used as antimicrobial elements in dressings.Silver: Requires wound to be moderately exudative to activate the silver, in order to be effective
NPWDSNa
V.A.C. Ulta
PICO
Renasys (not in USA)
Prospera PRO series
Invia Liberty
Computerized vacuum device applies continuous or intermittent negative or sub-atmospheric pressure to the wound surface. NPWT accelerates wound healing, reduces time to wound closure. Comes in both stationary and portable versions.May be used for traumatic acute wound, open amputations, open abdomen, etc. Seems to increase burn wound perfusion. Also used in management of DFUs. Contraindicated for arterial insufficiency ulcers. Not to be used if necrotic tissue is present in over 30% of the wound.
Bioengineered Skin and Skin SubstitutesAlloDerm, AlloMax, FlexHD, DermACELL, DermaMatrix, DermaPure, Graftjacket Regenerative Tissue Matrix, PriMatrix, SurgiMend PRS, Strattice Reconstructive Tissue Matrix, Permacol, EpiFix, OASIS Wound Matrix, Apligraf, Dermagraft, Integra Dermal Regeneration Template, TransCyteBio-engineered skin and soft tissue substitutes may be derived from human tissue (autologous or allogeneic), xenographic, synthetic materials, or a composite of these materials.Burns, trauma wounds, DFUs, VLUs, pressure ulcers, postsurgical breast reconstruction, bullous diseases

Source: MedMarket Diligence, LLC; Report #S251.

There are some market restraints at work, primarily the high cost of the new technologies. Not all country healthcare budgets can afford advanced wound care products, even if they are proven to decrease healing times and hospital costs over the longer run. The development of substitute products threatens existing product categories, while a lack of sufficient clinical and economic evidence backing new technology hinders growth and acceptance of some of the more advanced wound management technologies.

In addition, improved wound prevention and a lack of regulation on tissue engineering in the EU are also expected to hold back the development of new technologies. In addition to market restraints, there are a number of drivers that are expected to shape this market in the years to come. One of the primary drivers is the aging of the global population. Chronic diseases, such as circulatory conditions, anemias and autoimmune diseases influence the healing process as a result of their influence on a number of bodily functions. Illnesses that cause the most significant problems include diabetes, chronic obstructive pulmonary disease (COPD), arteriosclerosis, peripheral vascular disease (PVD), heart disease, and any conditions leading to hypotension, hypovolemia, edema, and anemia. While chronic diseases are more frequent in the elderly, wound healing will be delayed in any patient with underlying illness. Happily, most wounds heal without any problems. However, chronic wounds may take months or years to fully close, or may never close. Chronic wounds adversely affect the individual’s quality of life, and are a leading cause of burgeoning healthcare costs. Type 2 diabetes represents 85-95% of all diabetes in developed countries, and accounts for an even higher percentage in developing countries. There were 26 million diabetic patients in the US in 2012 and 285 million patients globally.   Of these patients, approximately 15% will develop a diabetic foot ulcer and 50% of these will become infected, representing an estimated 2 million patients. Diabetic foot infections are currently treated with systemic antibiotics, but the estimated failure rate of antibiotics for diabetic foot ulcers is in excess of 22%. A patient with diabetes is at significant risk of damage to tissues caused by impaired homeostasis due to the disease process. For example there is a tendency for such tissues to develop blockages in smaller blood vessels, which reduces the ability of these vessels to provide sufficient oxygen to tissues already under stress due to compromised nutrient supply and the diabetic condition. These patients then develop arterial ulcers. They may also have a tendency to suffer from venous ulcers, due to the underlying poor condition of cells as a result of the diabetes. The diabetic foot is the most common cause of non-traumatic lower extremity amputations in the US and Europe: there is an average of 82,000 amputations per year in the U.S., costing an estimated $1.6 billion annually. The estimated cost of foot ulcer care in the U.S. ranges from $4,595 per ulcer episode to more than $28,000 and the total annual cost of foot ulcer care in the US has been estimated to be as high as $5 billion.

Pressure, or decubitus, ulcers are another of the most common types of chronic wounds. The treatment of pressure ulcers places a major burden on healthcare systems worldwide, with an emerging additional cost of litigation increasing in importance over recent years. Healthcare practitioners need to be aware of both the direct and indirect costs and consider how the implementation of prevention protocols may offer cost savings in the longer term. The cost of a dressing for example as a prevention tool is minimal in comparison to the costs of treating an established pressure ulcer. Following are a few hard numbers on the true financial cost of pressure ulceration:

  • The estimated cost to the US hospital sector is $11 billion per annum
  • The estimated cost to the UK national health service is estimated at £1.4-£2.1 billion annually (4% of total NHS expenditure)
  • Lawsuits remain common in both acute and long term care — with high payments in certain cases
  • The average cost to treat an individual with an unstageable ulcer or a deep tissue injury is estimated to be $43,180
  • The average length of stay in hospital is almost three times longer for chronic wounds
  • The mean hospital cost for management of pressure ulcers in the U.S. is $14,426. In comparison, the same cost in Korea is identified as $3,000-$7,000.

The cost of treating chronic wounds is one element driving the development and utilization of advanced wound care technologies. Other drivers are the aging of the population, and the obesity epidemic, which is expected to produce a wave of diabetics in the years to come.

Source: Report #S251.

 

Top Growth Wound Care Product Sales By Country

Whether sales growth arises by a preferred adoption of one technology over another or by better than average economic conditions — or both, sales of wound management products are driven by technology adoption rates that vary by country, clinical practice patterns, reimbursement and other variables.

We assessed current and forecast sales for the following products:

  • Trad’l Adhesive Dressings
  • Trad’l Gauze
  • Trad’l Non-Adherent
  • Film
  • Foam
  • Hydrogel
  • lHydrocolloid
  • Alginate
  • Antimicrobial
  • Negative Pressure Wound Therapy
  • Bioengineered Skin & Skin Substitutes
  • Growth Factors

For all product segments but the traditional adhesive, gauze, and non-adherent wound care products (which were assessed only at the global level), we assessed growth in each of the following countries/regions: Americas (USA, Rest of North America, Latin America), Europe (United Kingdom, Germany, Italy, France, Spain, Rest of Europe), Asia/Pacific (Japan, Korea, Rest of Asia/Pacific), and Rest of World.

 

From our examination (report #S251) of the global market for wound management products, below are the top product-country cohorts in terms of projected compounded sales growth from 2015 to 2024.

 

Leaders in the global wound management market

There are literally many hundreds—perhaps thousands—of companies in wound care, ranging from tiny companies operating with a couple of employees in a developing country, to large-cap market leaders with thousands of employees located in offices around the world.

The following exhibit shows that a handful of companies account for a large part of the global advanced wound care market. Acelity LP, Inc., which is a merger of Kinetic Concepts, Inc. (KCI), Systagenix, Inc. and LifeCell, is now one of the leaders in this market, and accounts for about 20% of wound care revenues. Acelity is followed by Smith & Nephew plc, which is followed by several other companies with 13% or less of the market. The hundreds of other companies fall into the 20% of “Other”. In summary, about seven companies account for approximately 80% of the advanced wound care market worldwide.

Source: MedMarket Diligence, LLC; Report #S251.