Global wound market highlights

Highlights from the 2015 MedMarket Diligence report #S251, “Worldwide Wound Management, Forecast to 2024: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World” —

Wound management is a large global market (almost $15 billion currently) driven by high and sustained volume of traumatic, surgical, and other chronic and acute wound types. Simple wound dressings with little technology development continue to more than adequately serve a large swath of wound caseload and will continue to generate 1-2% in annual growth through 2024.

However, while a great deal of wound management products provide unsophisticated but effective wound care — and this is particularly why these products sell much better outside well developed western markets — the growing cost of wounds that do not heal fast enough, or at all, has been compounded by changes in wound incidence arising from increased obesity, the aging population, and other forces, creating demand for more sophisticated wound solutions. Enter the array of advanced wound care products like innovative wound dressing materials and components, bioengineered skin and other skin substitutes, biological wound growth factors, and others. These products have been projected to grow at an annual rate of up to 16% annually. The result is a steady erosion of the share of the global market represented by simple dressings and bandages.

 

Source: MedMarket Diligence, LLC; Report #S251

Medtech Fundings for January 2016

Fundings in medical technology for January 2016 stand at $500 million, led by Halozyme Therapeutics’ $150 million debt funding, Benvenue Medical’s $60 million funding, CryoLife’s $39 million funding, and V-Wave’s $28 million funding.

Below are the top fundings for the month, thus far. Please revisit this post (and refresh your browser) during January to see new medtech fundings.

For the complete list of fundings, see link.

For a month-by-month, historical list of fundings since 2009, see link.

Three Key Forces Behind Startups and Investment in Medical Technology

We see three key forces underlying investment trends in medical technology:

  • The spectrum of competition has been broadened and sometimes isn’t even obvious.

Widely different technologies (as in treatment of coronary artery disease, see white paper) can address a clinical condition, with the solution to the problem being the focus of new investment.

New materials for devices, drug-device hybrids, biotech-driven solutions, and other innovations can create competition between very different technologies. As a result, the paradigms and truths that held true in the past, when devices only went head-to-head with devices, are no longer relevant, creating the need to better assess the competitive landscape.

Manufacturers must there develop good market awareness, as in being cognizant of all the potential source of competition, such as from companies in adjacent markets who might pivot and seize market share.

  • Money flows to niches in medtech where the demand for clinical utility is high.

The biggest forces driving medtech are increasing patient populations or the cost of managing them. Niches that address the challenges of an older population with unsolved painful and or costly conditions (orthopedics, chronic wounds, diabetes, bariatrics) have prominent cost targets that stimulate investment.

Patient demographics, healthcare cost/utility demands and other forces make some medtech niches very attractive, even if only as a result of technology migration (e.g., to growth geo markets).

  • Underserved patient populations command almost as much attention as the untapped patient populations.

There is much potential return on investment to be made in blockbuster treatments, but these can be financial sinkholes compared to less grandiose technology solutions. A motive force exists in medtech, centered around healthcare costs, that is relentlessly forcing medical technology innovators to find opportunity within existing markets, by eliminating cost (e.g., shifting care to outpatient as via minimally invasive technologies). Significant medical technology investment has already recognized the value in targeting conditions for which new technology, new clinical practices and/or simply new ways of thinking can improve the quality of life, patient costs or both.

Medtech investment is most serious when it is (1) in high dollar value, or (2) tied to the formation of companies. It reflects confidence in that sector to the degree set by the investment.

In the past five years, MedMarket Diligence has tracked the identification of over 600 companies in medtech. Below is the distribution of their focus across a large number of clinical and technology areas (multiple possible, as in “minimally invasive” and “orthomusculoskeletal”).

These companies have also been tracked through their specific investments (detailed historically at link).

Source: MedMarket Diligence, LLC; Medtech Startups Database.

Cardiology, orthopedics, and surgery are mainstay drivers of new technology development in medtech, as has been the push for minimally invasive therapies, but nanotechnology, interventional (e.g., transcatheter) technologies, biomaterials, wound management and other niches have a steady stream of new company formations.


See recent reports from MedMarket Diligence in the following clinical areas.

Active Companies in Spine Surgery, 2015

Companies covered in the MedMarket Diligence report #M540, “Global Market for Medical Device Technologies in Spine Surgery, 2014-2021: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World”.

  • A-Spine Holding Group Corp
  • A-Spine USA, Inc.
  • Aap Implantate AG
  • Aesculap AG & CO. KG
  • Alphatec Spine, Inc.
  • Anatomica AB
  • Argomedical GmbH
  • ARTOSS GmbH
  • Arthrex, Inc.
  • Biocomposites Ltd.
  • Biomatlante
  • Biomet, Inc.
  • Biomet Europe
  • Biomet UK Ltd
  • Biomet France S.A.R.L.
  • Biomet Italia S.r.l.
  • Biomet Deutschland GmbH
  • Biomet Spain Orthopaedics, S.L.
  • Biotechni
  • BONESUPPORT AB
  • Ceraver
  • coLigne AG
  • Corin Group PLC
  • Cousin Biotech
  • Curasan AG
  • DePuy Orthopaedics, Inc.
  • DePuy France
  • DePuy Orthopädie GmbH
  • DePuy Italy SRL
  • DePuy Spain c/o Johnson & Johnson Medical
  • DePuy UK
  • Dieter Marquardt Medizintechnik GmbH
  • Eden Spine Europe SA
  • Elos Medical AB
  • Exactech Inc.
  • Graftys
  • Groupe Lepine
  • HiT Medica
  • Hipokrat Medical Devices
  • Implants Industrie
  • Implants International
  • Implants International Limited
  • Integra Lifesciences
  • JRI Limited
  • K2M, Inc.
  • Kasios
  • Kiscomedica
  • Lafitt S.A.
  • LDR Médical
  • Lima LTO
  • Mathys AG Bettlach
  • Medicrea Technologies
  • Medtronic Spinal and Biologics
  • Medtronic Österreich GmbH
  • N.V. Medtronic Belgium S.A.
  • Medtronic GmbH
  • Medtronic France S.A.S.
  • Medtronic Ibérica, S.A.
  • Medtronic Italia S.p.A.
  • Medtronic Limited
  • Orthovita, Inc.
  • OSD – Orthopaedic & Spine Development
  • Peter Brehm GmbH
  • Permedica S.p.A.
  • PINA Medizintechnik Vertriebs AG
  • Serf
  • SIGNUS Medizintechnik GmbH
  • Sintea Biotech S.p.A.
  • Small Bone Innovations, Inc.
  • Small Bone Innovations International
  • Smith & Nephew plc
  • Smith & Nephew Inc
  • Smith & Nephew SA
  • Smith & Nephew GmbH
  • Smith & Nephew S.A.
  • Smith & Nephew Orthopaedics Ltd
  • Spine Network
  • SpineVision SA
  • Stryker Corporation
  • Stryker European Headquarters
  • Stryker France SA
  • Stryker Howmedica GmbH
  • Stryker UK Limited
  • Stryker Italia S.r.l.
  • Stryker Howmedica Iberica S.L.U.
  • Surgi C
  • SURGIVAL-GRUPO COSíAS
  • Surgicraft
  • Synimed Synergie Ingénierie Médicale S.A.R.L.
  • Synthes GmbH
  • Teknimed
  • Vertebron
  • Viscogliosi Brothers LLC
  • Tornier S.A.
  • Wright Medical Technologies Inc
  • Zimmer Holdings Inc.
  • Zimmer France
  • Zimmer Chirurgie GmbH
  • Zimmer S.R.L., Italy
  • Zimmer, S.A.
  • Zimmer Ltd

See, ” MedMarket Diligence report #M540, “Global Market for Medical Device Technologies in Spine Surgery, 2014-2021”. Published September 2015.

Technologies in Development at Medtech Startups, October 2015

In our flurry of activity in October, we overlooked summarizing the new medical technologies identified at startups and added to the Medtech Startups Database:

  • Neodymium vaginal dilator for treatment of pelvic pain.
  • Large bore, power injection vascular access
  • Surgical instruments for use in bariatrics.
  • Surgical oncology.
  • Spine surgical technology including expandable intervertebral cage.
  • Technologies to treat hearing loss.
  • Device to determine blood vessel size.
  • Cerebrospinal fluid shunt.
  • Focused ultrasonic surgical devices for hemostasis, cauterization, and ablation.
  • Collagen polymers to create 3D tissue systems for drug discovery, engineered tissue/organ, wound management, and 3D bioprinting.
  • Regenerative medicine to treat brain injury or damage.
  • Neuro-monitoring and neuro-critical care.
  • Orthomusculoskeletal implants.
  • Devices and methods for hip replacement
  • Intraoperative image system.
  • Exocentric medical device
  • Electro-hydraulic generated shockwave for cosmetic, medical applications.

For a historical listing of technologies at medtech startups, see link.

Bioactive and Synthetic Sealants in Wound Closure

The following is excerpted from sections of Report #S192, “Worldwide Surgical Sealants, Glues, and Wound Closure Markets, 2013-2018”, published by MedMarket Diligence, LLC.

Sealants and glues in wound closure may be comprised of naturally-occurring (bioactive) ingredients (including from human or animal) or may be synthetic in origin. Many bioactives are comprised primarily of fibrin sealant, give its evolutionary design in stopping bleeding and sealing wounds. Bioactive sealants offer the benefit of well documented performance with lack of toxicity, but with the existing sealants on the market, the strength of the closure provided falls somewhat short of what is needed for sealants to be used autonomously in all but the least challenging closure conditions. For this reason, a wide range of other biologically active agents with higher sealant strength are in various phases of evaluation (See “Gecko feet, mussel shells and other sticky things” at link).

Bioactive sealants that on the market and in development are detailed at link.

Compared to biologically active sealants containing fibrin and other human- or animal-derived products, synthetic sealants represent a much larger segment of the sealant market in terms of the number of competitors, variety of products, and next-generation products in development. Non-active synthetic sealants do not contain ingredients such as fibrin that actively mediate the blood clotting cascade, rather they act as mechanical hemostats, binding with or adhering to the tissues to help stop or prevent active bleeding during surgery.

Synthetic sealants that are on the market and in development are detailed at link.

Below is the global surgical wound closure products market.

Surgical Wound Closure Products Market, by Device Segment

 

Source: MedMarket Diligence, LLC; Report #S192.

Technologies Gaining Nearly $600M Fundings in Medtech for October 2015

Fundings for medical technology reached $594 million for the month of October 2015. These are the technologies gaining funding In October 2015:

  • Tissue engineering in blood vessels, including for acellular vessels use for vascular access in ESRD
  • Magnetically adjustable spinal bracing system
  • Technologies to reduce the risk of stroke in transcarotid artery revascularization
  • Technologies to treat hearing loss
  • Surgical adhesives and sealants
  • Drug-device for novel treatment of urologic diseases
  • Drug delivery device technology
  • Minimally invasive device for the treatment of acute decompensated heart failure
  • Diagnostics for acute kidney injury
  • Catheter-based, minimally invasive treatment of endovascular arteriovenous fistula
  • Minimally invasive, non-surgical technology for circulatory support
  • Endovascular aortic aneurysm repair
  • Non-invasive intracranial pressure measurement
  • Implantable pump technology for fluid management
  • Intraoperative imaging and navigation
  • Devices for dry eye, glaucoma, others.
  • Nonsurgical device for the treatment of chronic nasal obstruction
  • Focused ultrasonic surgical devices for hemostasis, cauterization, and ablation
  • Technology for drug delivery to brain
  • Technologies for robotically-assisted minimally invasive surgery
  • Catheter based therapeutic devices for the treatment of cerebral aneurysms
  • Neuromodulation technologies
  • Renal denervation
  • Device to provide rapid allergy relief and device to monitor neonatal end-tidal carbon monoxide

For details on these, including the companies and their funding amounts, see link.

The future of medtech demands more and better imagination

I frequently see conclusions about the the future of medtech derived by analysts who are walking backward looking at their feet — living by the tenet of “past is prologue”. This type of “foresight” presumes an unchanging set of forces, leading (at best) to a conclusion that the future will hold more of the same.

Yet, the future of medtech is dictated far more significantly not by what has already happened, or as a result of past trends continuing as future trends, but by what has not happened yet. The major thrust of any significant growth (and isn’t growth most interests us?) comes primarily from events that do not as clearly follow from past events:

  • Surgical device sales forecasts are uprooted by introduction of laparoscopy
  • Tissue engineering preempts conventional treatments in wound, orthopedics, cardiology…
  • Success in type 1 diabetes treatment will be determined by device advances as well as cell therapy advances
  • Systems biology reveals risks and opportunities previously unseen

If you view your markets myopically, then you consider your competitors to be limited to those whose products most resemble your own. If you have a long view, you consider what might be possible based on available/emerging technology to tap into untapped demand or simply create latent demand that no company has yet been sufficiently visionary or innovative to seize. What patient populations, clinical practice patterns and their trends are the pulse that you monitor (or are you even monitoring these)?  There is a gap between what is available and a whole set of patients virtually untreated, physicians unsatisfied, and third party payers struggling.  Are you an angioplasty catheter manufacturer — or a coronary artery disease solution?  Do you make devices — or outcomes?

Source: Yann Girard https://www.linkedin.com/pulse/life-explained-through-technology-yann-girard

Look at staid “device” companies like Baxter International and see that they have “biosurgery” divisions.  Look at Medtronic and appreciate that they are as sensitive to developments in glucose monitoring and insulin pump technologies as they are to the litany of cell therapy approaches under pursuit. (These companies are fundamentally aware of technology “S-curves” — see graphic at right.)

Virtually every area of current clinical practice is subject to change when considering drug/device hybrids, biomaterials, nanotechnology/MEMs devices and coatings, biotechnology, pharmaceutical (and its growing sophistication in drug development), western medicine and eastern medicine, healthcare reform, cost containment, RFIDs, 3D printing, information technology  — it is imperative to see the upside and downside of these.

These are some of the forces that less characteristic of the past that are leading to startling new success in medtech developments:

  • Materials technologies are redefining the nature and functional limits of medical devices
  • Technologies more closely aligned with cure than symptomatic treatment gain rapid acceptance
  • The practice of considering outcomes measures of highly diverse technology solutions to disease has ascended to prominence in the mindsets of healthcare systems and payers
  • The use of information technologies and cross-medical discipline initiatives enables rapid determination of likely success and failures in whole new ways

Aside from the demands for operational efficiency and managing cash flows, the success or failure of medical technology companies has become a reflection of how well these companies position themselves now and in the future with an imaginative long view. Companies must consider the revenue streams in Year 1, Year 5 and Year 10.

 

Medtech Startups, 2010-2015

From 2010 to present (Oct 2015), as included in the Medtech Startups Database, MedMarket Diligence identified 442 new (under one year old) medical technology startups whose businesses encompass, alone or in combination, medical devices, diagnostics, biomaterials, and the subset of both biotech and pharma that is in direct competition with medical devices, including tissue engineering and cell therapy. Of these, 74% were founded in the U.S., 5% were founded in Israel, and the rest were founded in 18 other countries.

Companies in the database have been categorized by clinical and/or technology area of focus, with multiple categories possible (e.g., minimally invasive and orthomusculoskeletal and surgery). Below is the composition of the companies identified from Jan. 2010 to Oct. 2015.

Screen Shot 2015-10-06 at 4.50.10 PM

Source: Medtech Startups Database

Below is a graphic on the companies by country. The U.S. (not shown) led with 327 companies.

Screen Shot 2015-10-06 at 4.17.30 PM

Source: Medtech Startups Database

In the U.S., the breakdown by state, other than California and its 466 companies (excluded only to show states with significantly lower numbers), is as follows:

Screen Shot 2015-10-06 at 5.13.08 PM

Source: Medtech Startups Database

 

Technology advances in spine surgery

Manufacturers, clinicians and others focusing on technology advancement in spine surgery are not developing radical innovations, but are making enough incremental improvements in a number of ways that result in growth in the industry.  Most improvements fall into a number of categories:

Screen Shot 2015-09-14 at 7.29.36 AMNew materials technologies: Historically, spinal fusion instrumentation was fabricated from metallic biomaterials, including stainless steel and titanium alloy, because of their strength and fatigue resistance. However, one key drawback of these metallic implants is incompatibility with diagnostic imaging, including MRI and CT scans, which are crucial for visualizing changes to the spinal cord and vital soft tissue structures of the spine. To overcome these issues a variety of new materials such as biocompatible carbon fiber-reinforced (CFR) thermoplastic materials and implantable polyetheretherketone (PEEK) polymers were examined as an alternative to the traditional materials. In addition to biocompatibility, biostability and compatibility with diagnostic imaging, these advanced thermoplastic polymers provide a range of mechanical properties that are well suited to the demanding environment of spinal implants.

Implantable PEEK polymers are available today in an array of formulations, ranging from unfilled grades with varying molecular weight, to image-contrast and carbon fiber-reinforced grades. The first implantable unfilled PEEK polymer–PEEK-OPTIMA was pioneered in 1999 by United Kingdom-based Invibio Biomaterial Solutions. Introduced by Invibio in 2007 to provide controlled visibility through X-ray, CT and MRI technologies, image-contrast grades offer tailored opacity that allows for easier post-operative device placement verification by surgeons and clear assessment of the healing site. Also launched by Invibio in 2007, carbon fiber-reinforced (CFR) grades provide significantly increased strength and stiffness as well as a modulus similar to that of cortical bone.

The CD HORIZON LEGACY PEEK Rod from Medtronic Sofamor Danek and the EXPEDIUM™ PEEK Rod System from DePuy Spine, Inc., are examples, in which these polyetheretherketone (PEEK) polymers are radiolucent and have the ability to reduce scatter and artifact from CT and MRI images. [Picture source: MRI scan via Shutterstock]

Screen Shot 2015-09-14 at 7.24.36 AMComputer aided fixation of spinal implants: A number of proprietary techniques are being developed that provide computer or robotic alignment for the placement of spinal implants. Current research ensures that further developments will occur resulting in more extensive use of computer aided fixation. [Picture source: NIH]

 

percutaneous spineMinimally invasive spine surgery: Manufacturers have development technologies in percutaneous and endoscopic approaches to spine surgery that are having (and will continue to have) a significant impact on patients, clinical practice and the market for spine products.  It is producing all the expected benefits of less invasiveness — less traumatic surgery results in shorter recovery times and better outcomes and opens up spine surgery to more elderly, infirm and other patients for whom traditional spine surgery would be contraindicated. [Image: Handbook of Minimally Invasive and Percutaneous Spine Surgery; allamericanspeakers.com]

 

Screen Shot 2015-09-14 at 7.19.47 AMVariable axis screw systems: A variable axis screw system is a pedicular screw system that features a variable-axis head, which offers a ±25 degrees of angulation. The system also offers a pre-contoured rod. The contoured rod, along with the angulation available in the screw head, alleviates the need for rod contouring. The screw also features a pre-assembled head and double lead thread. The pre-assembled head reduces the steps required for construct assembly and the double lead thread increase the speed of screw insertion and construct assembly so that the overall operative time can be shortened. [Picture source: DePuy Synthes]

Products, technologies, markets, companies and opportunities in the spine surgery industry are the focus of the MedMarket Diligence Report #M540, “Global Market for Medical Device Technologies in Spine Surgery, 2014-2021: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World.” The next five purchasers of this report (any option) will receive a 25% discount off the published price online by entering the coupon code “spinepricectomy”.