Category Archives: biomaterials

Surgical Glues, Sealants, Hemostats and Wound Closure Worldwide Markets

Acute wounds have long represented a core focus of healthcare, one that manufacturers have been steadily changing through innovative new technologies. MedMarket Diligence’s global report on wound closure markets reveals the dynamics of this change, detailing the clinical practices, products, technologies, companies and the resulting current and forecast markets.

PRLogApril 7, 2015MISSION VIEJO, Calif.The products and technologies focused on the management of acute wounds, encompassing hemostasis, closure and sealing represent a significant, growing segment of the total medical device market. The global market for surgical sealants, glues, and wound closure devices reached over $10.8 billion in 2014 and is forecast to increase to about $14 billion in 2018, exhibiting an overall compound annual growth rate (2014-2018) of 7.0%, according to the latest global report on wound closure and related products, published by MedMarket Diligence.

“We have tracked this market as manufacturers introduced novel wound sealing and closure technologies intended to integrate with one of the highest volume areas of healthcare,” says Patrick Driscoll, President of MedMarket Diligence. According to Driscoll, the level of innovation has been remarkable — from the advent of fibrin glues, to the continued evolution of sutures and staples, to the emergence of products working alone or in tandem to achieve better outcomes in a cost sensitive climate.This market is comprised of sutures/staples, vascular closure devices, surgical tapes, surgical hemostats, and surgical sealants and glues. There are well over 100 companies active in the marketing and development of these products, with the associated technologies running the gamut from devices to biologics to synthetics.

Wound closure has become a clinical practice that is rapidly evolving from what was once simple suturing or taping wounds to more sophisticated procedures that ensure rapid cessation of blood loss, prompt closure, strong adhesion of wound edges, tight sealing, reduced scarring, reduced risk of infection and more rapid healing — all accomplished largely with existing surgeon skills and with reasonable costs for healthcare payers and margins for manufacturers.

Surgical sealants and glues are expected to demonstrate the highest growth rate over the forecast period, but the largest segment in terms of revenues is the sutures and staples market, which comprise about half of the worldwide total. Hemostats represent the next largest segment, followed by surgical sealants and glues, tapes, and vascular closure devices.

The market leaders in this area are Johnson & Johnson, Covidien, B. Braun, and 3M, but market shares have proven to be fluid as innovations from hundreds of competitors are gaining and expanding footholds in the big companies’ territories.

The MedMarket Diligence report, “Worldwide Surgical Sealants, Glues, and Wound Closure Markets, 2013-2018“, provides specific forecasts and shares of the worldwide market by segment for Americas (detail for U.S., Rest of North America and Latin America), Europe (detail for United Kingdom, German, France, Italy, Spain, Rest of Europe), Asia/Pacific (detail for Japan, Korea, Rest of Asia/Pacific) and Rest of World.

The report also provides background data on the surgical, disease and traumatic wound patient populations targeted by current technologies and those under development, and the current clinical practices in the management of these patients, including the dynamics among the various clinical specialties or subspecialties vying for patient population and facilitating or limiting the growth of technologies.

The report establishes the current worldwide market size for major technology segments as a baseline for and projecting growth in the market through 2018. The report also assesses and projects the composition of the market as technologies gain or lose relative market performance over this period.

The report profiles the top companies by revenue and a reasonable selection of the most promising or otherwise noteworthy companies in the markets covered in this report, providing data on their current products, current market position and products under development.

The report is described in detail at http://www.mediligence.com/rpt/rpt-s192.htm and may be ordered for immediate download from http://www.mediligence.com/store/page50.html.

Surgical Sealants, Glues, and Hemostats with Bioactive Agents

Excerpt from Report #S192, “Worldwide Surgical Sealants, Glues, and Wound Closure 2013-2018”.

Screen Shot 2015-03-30 at 10.14.59 AMBiologically active sealants typically contain various formulations of fibrin and/or thrombin, either of human or animal origin, which mimic or facilitate the final stages of the coagulation cascade. The most common consist of a liquid fibrin sealant product in which fibrinogen and thrombin are stored separately as a frozen liquid or lyophilized powder. Before use, both components need to be reconstituted or thawed and loaded into a two-compartment applicator device that allows mixing of the two components just prior to delivery to the wound. Because of the laborious preparation process, these products are not easy to use. However, manufacturers have been developing some new formulations designed to make the process more user friendly.

Selected Biologically Active Sealants, Glues, and Hemostats 

CompanyProduct NameDescription/
(Status*)
Asahi Kasei MedicalCryoSeal FS SystemFibrin sealant system comprising an automated device and sterile blood processing disposables that enable autologous fibrin sealant to be prepared from a patient's own blood plasma in about an hour.
BaxterArtissFibrin sealant spray
BaxterTisseelBiodegradable fibrin sealant made of human fibrinogen and human thrombin. For oozing and diffuse bleeding.
BaxterFloSealHemostatic bioresorbable sealant/glue containing human thrombin and bovine-derived, glutaraldehyde-crosslinked proprietary gelatin matrix. For moderate to severe bleeding.
BaxterGelFoam PlusHemostatic sponge comprising Pfizer's Gelfoam hemostatic sponge, made of porcine skin and gelatin, packaged with human plasma-derived thrombin powder.
Behring/NycomedTachoCombFleece-type collagen hemostat coated with fibrin glue components.
Bristol-Myers Squibb/ZymoGenetics (Sold by The Medicines Company in the US and Canada)RecothromFirst recombinant, plasma-free thrombin hemostat.
CSL BehringBeriplast P/Beriplast P Combi-SetFreeze dried fibrin sealant. Comprised of human fibrinogen-factor XIII and thrombin in aprotinin and calcium chloride solution.
CSL BehringHaemocomplettan P, RiaSTAPFreeze-dried human fibrinogen concentrate. Haemocomplettan (US) and RiaSTAP (Europe).
J&J/EthiconEvicelEvicel is a new formulation of the previously available fibrin sealant Quixil (EU)/Crosseal (US). Does not contain the antifibrinolytic agent tranexamic acid, which is potentially neurotoxic, nor does it contain synthetic or bovine aprotinin, which reduces potential for hypersensitivity reactions.
J&J/EthiconEvarrestAbsorbable fibrin sealant patch comprised of flexible matrix of oxidized, regenerated cellulose backing under a layer of polyglactin 910 non-woven fibers and coated on one side with human fibrinogen and thrombin.
J&J/EthiconBIOSEAL Fibrin SealantLow-cost porcine-derived surgical sealant manufactured in China by J&J company Bioseal Biotechnology and targeted to emerging markets.
J&J/EthiconEvithromHuman thrombin for topical use as hemostat. Made of pooled human blood.
Pfizer/King PharmaceuticalsThrombin JMIBovine-derived topical thrombin hemostat.
Stryker/OrthovitaVitagel SurgicalBovine collagen and thrombin hemostat.
Takeda/NycomedTachoSilAbsorbable surgical patch made of collagen sponge matrix combined with human fibrinogen and thrombin.
Teijin Pharma Ltd/Teijin Group (Tokyo, Japan)KTF-374Company is working with Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN) to develop a sheet-type surgical fibrin sealant. Product combines KAKETSUKEN's recombinant thrombin and fibrinogen technology with Teijin's high-performance fiber technology to create the world's first recombinant fibrin sealant on a bioabsorbable, flexible, nonwoven electrospun fiber sheet.
The Medicines Company (TMC)Raplixa (formerly Fibrocaps)Sprayable dry-powder formulation of fibrinogen and thrombin to aid in hemostasis during surgery to control mild or moderate bleeding.
The Medicines Company (TMC)In development: Fibropad patchFDA accepted company's BLA application for Fibrocaps in April 2014 and set an action date (PDUFA) in 2015. In November 2013, the European Medicines Agency agreed to review the firm's EU marketing authorization application. Status update in report #S192.
Vascular SolutionsD-Stat FlowableThick, but flowable, thrombin-based mixture to prevent bleeding in the subcutaneous pectoral pockets created during pacemaker and ICD implantations.

Note: Status of products detailed in Report #S192.

Source: MedMarket Diligence, LLC

Medical Technologies at Startups, March 2015

(Updated)
Below is a list of the technologies under development at startups identified in March 2015 and included in the Medtech Startups Database.

  • Implanted neuromodulation device for the control of blood pressure.
  • Less invasive, catheter-based treatment of congestive heart failure caused by ischemic cardiomyopathy.
  • Electrophysiology recording systems for the treatment of atrial fibrillation.
  • Transcatheter mitral valve repair.
  • Orthopedic surgical instruments.
  • Smartphone-enabled stethoscope.
  • Bioresorbable device for the non-surgical treatment of aneurysms in patients with Kawasaki Disease.
  • Cold-based dilatation catheter system for the treatment of various peripheral lesion types.
  • Intraoperative surgical image guidance system.
  • Surgical device for bone alignment.
  • Bone-fixation for orthopedics and tissue allografts for post-surgery wound care.
  • Single-use surgical retractors for use during minimally invasive surgery.
  • Developing a cell therapy for Type 1 diabetes.
  • Optical targeting and visualization of trajectories in surgical procedures.
  • Contract medical technology development.
  • Device for the treatment of obstructive sleep apnea.

For a historical listing of technologies at medtech startups, see link.

Technologies at Medtech Startups, December/January

Below is a list of the medical technologies under development at startups identified in December 2014 and January 2015 and included in the Medtech Startups Database:

  • Device to enable office-based placement of tympanostomy tubes.
  • Surgical wound closure device technology
  • Pelvic neuromodulation for urinary incontinence, fecal incontinence, chronic pelvic pain, others.
  • Device designed to treat blood plasma to improve its ability to remove lipids from atherosclerotic plaque.
  • Regenerative medicine
  • Patient-specific surgical instruments for treatment of joint injuries.
  • Surgical sensors/probes, including gamma probe for use during radiosurgically-guided procedures.
  • Biodegradable medical implants.
  • Novel device to monitor inflammation of the gastrointestinal tract.
  • Surgical instrumentation including surgical perforation guide.
  • Technology for improved treatment of atrial fibrillation.

For a historical listing of technologies identified at startups, see link.

Surgical Sealants and Glues Sales Growth

Aside from demonstrating clinical utility in wound sealing and closure on their own, sealants and glues are emerging as important adjunctive tools for sealing staple and suture lines, and some of these products also are being employed as general hemostatic agents to control bleeding in the surgical field. Manufacturers have also developed surgical sealants and glues that are designed for specific procedures – particularly those in which staples and sutures are difficult to employ or where additional reinforcement of the internal suture/staple line provides an important safety advantage.

Sales of surgical sealants and glues have become as common in some surgical procedures as sutures and staples in well developed markets (U.S., Europe and Japan), but their use continues to expand in both stand alone and adjunctive use with other wound closure. Emerging markets, especially in Asia will drive nearly double these growth rates. All told, the global surgical sealants and glues market will eclipse $2 billion by 2018 on compound annual growth of 9.4%.

Screen Shot 2015-01-27 at 2.45.11 PMSource: MedMarket Diligence, LLC; Report #S192.

 

New Medical Technologies at Startups, September 2014

Below is a list of new technologies under development at medtech startups recently identified and included in the Medtech Startups Database:

  • Robotics for ophthalmic surgery.
  • Dynamic force generation for bone repair.
  • Neursurgical brain simulation system.
  • Orthopedic technologies including pedicle screw that does not require a guide wire.
  • Synthetic bone graft materials.
  • Minimally invasive mitral valve replacement.

For a historical listing of the technologies under development at medtech startups, see link.

Sealants, Glues, Hemostats, Anti-Adhesion: An Evolved Market

In a forthcoming report on advanced technologies associated with the acute phase of wound management — specifically, hemostasis, closure and sealing — MedMarket Diligence will be revealing the state of the art and the industry for fibrin and other surgical sealants; cyanoacrylate and other synthetic and naturally-occurring high strength glues; a wide range of products providing hemostasis; products that prevent the formation of post-surgical adhesions; and the increasingly varied types of physical wound closure, including sutures, staples, clips, tapes, and other mechanical wound closure types.

Our analysis in 2012 illustrated the scope and depth to which these advanced wound closure products had penetrated the realm of many areas of clinical practice that, up to a scan decade ago, had been dominated for a millennia by simple physical methods to manage acute wounds — sutures and tapes. Below is an illustration of the size and growth in e sales of these products, showing that the advanced products are being adopted at accelerated rates, yet a sizable volume of wound closure remains in the hands of very traditional closure (sutures/staples).

Size and Growth of Surgical Securement Product Segments Worldwide 2010-2019

Source: “Worldwide Surgical Sealants, Glues, Wound Closure and Anti-Adhesion Markets, 2008-2015.”  Published by MedMarket Diligence, LLC. See updated Report S192.

Of course, the field of sutures and staples is not exactly stagnant, devoid of innovation. Sutures, staples and clips innovation have been driven by the commensurate innovation in surgical technique. Traditional surgery via laparotomy has long since been revolutionized by laparoscopy, and endoscopic procedures in general have become the standard for minimizing surgical trauma and faster recovery. The endoscopic format has demanded new suturing and stapling technologies, and industry stalwarts like Ethicon, Covidien and others have been happy to provide the solutions.  And even more recently, natural orifice transluminal endoscopic surgery (NOTES) procedures are pushing the minimally invasive principle to a greater extreme.

The Staying Power of Spine Surgery Markets

While medtech over the past five years has seen continued pressure on prices, increased oversight on physician-manufacturer relationships, reduced med/surg procedure volumes, continued regulatory challenges and the real or perceived negative impacts of the Affordable Care Act, the business of spine surgical technologies remains one of the most steadfast oases of innovation and price stability.

The continued growth of spine surgery owes itself to a number of key drivers:

  • The ageing population worldwide
  • Increasing incidence of obesity
  • A growing middle class in developing countries, with the ability to pay out of pocket for spine surgery
  • Improving worldwide economy
  • Technological device enhancements, leading to improved surgical results
  • Developments in minimally invasive spine surgery (MISS) devices driving a strong increase in MISS, with its numerous advantages
  • In the US, improvements in reimbursement as clinical trials demonstrate the efficacy of treatments using the devices
  • US healthcare reform leading to medical insurance coverage for more people, allowing those suffering from intractable back pain to receive surgical treatment

(The last, of course, is debatable, since medical device manufacturers are not yet convinced that a 3.2% excise tax is supported by the anticipated boost in patient population. The jury is still out on this and, in any case, prospects for the 3.2% tax being repealed are slim, despite repeated efforts.)

Consequently, the worldwide aggregate spine surgery market has a 2012 to 2020 compound growth rate of 7.7%, with individual segments within it growing at a low of 2.3% to a high of 35.0%.

It is also worth noting that we have identified seven (7) new medtech startups (McGinley Orthopaedic Innovations, KB Medical, Trice Orthopedics, Tyber Medical, Direct Spinal Therapeutics, NLT Spine, Osseus Fusion Systems) in spine surgery that have been founded in the past three years alone.

Below is illustrated the spine surgery markets in the Americas and Europe for 2012-2020.

Screen Shot 2014-05-28 at 10.33.52 AMScreen Shot 2014-05-28 at 10.34.10 AM

Source: MedMarket Diligence, LLC; Report #M520, “Worldwide Spine Surgery: Products, Technologies, Markets and Opportunities 2010-2020”.

Growth versus volume in medtech

One of the more interesting aspects of well-established markets that have significant volume in medical technology product sales is that the revenue and the caseload are sufficient to drive fairly a continuous range of technologies that will meet patient demand. As a result, there tends to be a continuum between high-volume, low-growth and low-volume high-growth. This significance should be apparent to active or potential market participants.

This continuum can be represented in two noteworthy ways, each of which illustrates the inverse relationship between the size of a market segment and its growth. For example, one of the most well established medtech markets is traditional bandages and dressings in wound management. These are simple to manufacturer, applicable to a wide range of wound types, require little clinician knowledge to use and, therefore, widely used throughout the world. They represent very large volume, in the $billions worldwide. At the other end of this spectrum are emerging technologies such as the use of growth factors in wound management. They have a large, as yet untapped potential, so their anticipated growth is high, while their current volume still remains very low, at least by comparison to traditional wound dressings.

Here is how these two technologies appear at the ends of the spectrum in wound management, between which are large numbers of different wound management technologies.
20140523-114241-42161375.jpg
Source: MedMarket Diligence, LLC; Report #S249.

The second way this can be represented is the relative share of the market represented by each as they change over time given their differing sales growth rates. Below is an illustration of the net change in share of the total market for wound management products by each product type. Again, there is a noticeable continuum.

20140523-114506-42306054.jpg

Source: MedMarket Diligence, LLC; Report #S249.

The amount of medtech funded is often less than half the story

In tracking venture capital or other money flowing into “medtech”, I am frequently struck by how often the numbers that are presented as evidence tell only part of the picture, like one of the several blindfolded men touching different parts of an elephant tasked with identifying what it is they are touching.

Recent results from Pricewaterhouse Coopers on Q1 2014 venture capital paints a picture illustrating an 11% increase from Q1 2013 to Q2 2014 in total funding for “medical device” companies, with a drop in the number of deals, from 29 to 25.

There are two problems with this, the first being that the fundings data so presented is only looking at “medical device” companies, the second being that we have no evidence on the number of companies seeking funding in either year.

First, talking about medical devices in 2014 is a lot like talking about horses in 1910.  Neither one tells the whole story of the markets in which they very clearly compete. Second, while the amount of money actually funded by VC in 2014 versus 2013 is obviously important (especially to the recipients), the number and size of the deals rejected in both years is also rather important as well (especially to the non-recipients).

So, what should be presented differently? Well, tracking the “medical device” industry is just not relevant anymore (I’ve already argued this ad nauseum), since medical devices don’t just compete with medical devices anymore — for clinical applications or venture funding. In my opinion, the tracking of funding should first look at funding in, say, coronary artery disease treatment (i.e., “disease state”), then consider the share of that funding that is going toward this or that therapeutic option. As for the amount funded, would it not be meaningful to all involved to track the amount of actual versus proposed funding, especially if the proposed funding was limited to actual deals that were ultimately accepted or rejected?

Below is the amount of funding in “medtech”* by month from January 1, 2009, to May 21, 2014, presented both as an annual overlay to reflect seasonality and as a continuum, with a linear trendline.

Screen Shot 2014-05-21 at 1.02.36 PM

 

 

Screen Shot 2014-05-21 at 1.12.37 PM

Source: MedMarket Diligence, LLC

_________________________
*What is “medtech”?: We view medical technology (medtech) as principally medical devices and equipment, but also all technologies that are directly competitive with or complementary to technologies represented by therapeutic or diagnostic medical devices/equipment.

Note: Historic coverage of “medtech” has been limited to medical devices, supplies and equipment. We feel that such a limited definition poorly reflects the true nature of the markets that once were limited to such products. In reality, assessing the markets and competition for medical devices by ONLY considering other medical devices would result in gross underestimations of both competition and market potential. Moreover, this is reflected in both the nature of medical devices, which may be hybrid device/bio/pharm products or products that may not be “devices” at all, especially in the typical definitions defined by material type and function, but that compete head-on with devices.