Regional Markets for Surgical Sealants, 2015 and 2022

The fastest growth in the sales of surgical sealants over the next decade will be in the Asia-Pacific region, driven primarily by very strong healthcare market growth in China, and reaching a CAGR (2016-2022) of at least 13.97%. The growth rate in China would be even higher, but will be dampened for the time being by the lack of surgeons trained in the proper use of these products, as well as the limitations of reaching a dispersed patient population. Nonetheless, the A/P share of the global sealants market will double in the next seven years!

Below illustrates the geographic distribution of surgical sealants (fibrin and others) in 2015.

Regional Markets for Sealants, Fibrin and Other Sealant Products,
2015 & 2022, USD Millions

2015screen-shot-2016-11-11-at-8-52-44-am

2022

screen-shot-2016-11-11-at-8-53-17-am

Source: MedMarket Diligence, LLC; Report #S290.

Cardiovascular Surgical and Interventional Procedures Worldwide, 2015-2022

In 2016, the cumulative worldwide volume of the the following CVD procedures is projected to approach 15.05 million surgical and transcatheter interventions:

  • roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • about 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • more than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

screen-shot-2016-11-07-at-7-26-38-am

CABG: Coronary artery bypass graft; PCI: Percutaneous coronary intervention; AAA: Abdominal aortic aneurysm; TAA: Thoracic abdominal aneurysm; CVI: Chronic venous insufficiency; DVT: Deep vein thrombosis; PE: Pulmonary embolectomy.

Source: MedMarket Diligence, LLC; Report #C500, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.”

The Regimens for Assessing and Treating Wound Types

Wound treatment starts with diagnosis. Acute wounds are often surgically created, or dealt with in accident and emergency (A&E) settings. Diagnosis in the acute scenario usually focuses on cleanliness and tidying of the wound edges to enable securement using sutures or glue products. If major trauma has occurred, hemostats and sealants may be required. In the chronic scenario, diagnosis is a process that occurs at every treatment session. The practitioner will examine size, appearance and odor changes to the wound, and from this process determine the ideal management. In addition, it is likely that the physician will take samples to send for microbial assessment if infection becomes a concern.

Following diagnosis and assessment, treatment will be established based on known efficacy and cost of individual dressings, knowledge of the potential products that may be used, and their availability. This will be determined by reimbursement, local purchasing decisions, and resources.

For chronic wounds, treatment often involves symptoms; many products are designed to remove aesthetically unpleasant aspects of wounds such as exudates, smell, and visibility.

Management of exudates also has a wound-healing benefit. Too much exudate leads to hydrolytic damage and maceration of the tissue and surrounding skin. Too little moisture leads to drying out of the wound and cell death. As a result, many advanced wound management products have been developed to optimize the moist wound healing environment. As a huge variety of wound conditions arise, a large number of dressings has been developed to help manage the full range of circumstances that may be encountered. These include dressings made from foams, polyurethane films, alginates, hydrocolloids, and biomaterials to manage exudates, which may be present in vast quantities (perhaps as much as two liters per square meter per day). Other products are designed to moisten the wound to optimize healing (amorphous hydrogels for example).

Much of the advanced wound management market has evolved to improve exudates management in the home setting, in order to reduce the need for visits by practitioners and the associated cost.

Types and Uses of Select Wound Care Products

    
Dressing categoryProduct examplesDescriptionPotential applications
FilmHydrofilm, Release, Tegaderm, BioclusiveComes as adhesive, thin transparent polyurethane film, and as a dressing with a low adherent pad attached to the film.Clean, dry wounds, minimal exudate; also used to cover and secure underlying absorptive dressing, and on hard-to-bandage locations, such as heel.
FoamPermaFoam
PolyMem
Biatain
Polyurethane foam dressing available in sheets or in cavity filling shapes. Some foam dressing have a semipermeable, waterproof layer as the outer layer of the dressingFacilitates a moist wound environment for healing. Used to clean granulating wounds which have minimal exudate.
HydrogelHydrosorb Gel Sheet, Purilon, Aquasorb, DuoDerm, Intrasite Gel, GranugelColloids which consist of polymers that expand in water. Available in gels, sheets, hydrogel-impregnated dressings.Provides moist wound environment for cell migration, reduces pain, helps to rehydrate eschar. Used on dry, sloughy or necrotic wounds.
HydrocolloidCombiDERM, Hydrocoll, Comfeel, DuoDerm CGF Extra Thin, Granuflex, Tegasorb, Nu-DermMade of hydroactive or hydrophilic particles attached to a hydrophobic polymer. The hydrophilic particles absorb moisture from the wound, convert it to a gel at the interface with the wound. Conforms to wound surface; waterproof and bacteria proof.Gel formation at wound interface provides moist wound environment. Dry necrotic wounds, or for wounds with minimal exudate. Also used for granulating wounds.
AlginateAlgiSite, Sorbalgon Curasorb, Kaltogel, Kaltostat, SeaSorb, TegagelA natural polysaccharide derived from seaweed; available in a range of sizes, as well as in ribbons and ropes.Because highly absorbent, used for wounds with copious exudate. Can be used in rope form for packing exudative wound cavities or sinus tracts.
AntimicrobialBiatain Ag
Atrauman Ag
MediHoney
Both silver and honey are used as antimicrobial elements in dressings.Silver: Requires wound to be moderately exudative to activate the silver, in order to be effective
NPWDSNa
V.A.C. Ulta
PICO
Renasys (not in USA)
Prospera PRO series
Invia Liberty
Computerized vacuum device applies continuous or intermittent negative or sub-atmospheric pressure to the wound surface. NPWT accelerates wound healing, reduces time to wound closure. Comes in both stationary and portable versions.May be used for traumatic acute wound, open amputations, open abdomen, etc. Seems to increase burn wound perfusion. Also used in management of DFUs. Contraindicated for arterial insufficiency ulcers. Not to be used if necrotic tissue is present in over 30% of the wound.
Bioengineered Skin and Skin SubstitutesAlloDerm, AlloMax, FlexHD, DermACELL, DermaMatrix, DermaPure, Graftjacket Regenerative Tissue Matrix, PriMatrix, SurgiMend PRS, Strattice Reconstructive Tissue Matrix, Permacol, EpiFix, OASIS Wound Matrix, Apligraf, Dermagraft, Integra Dermal Regeneration Template, TransCyteBio-engineered skin and soft tissue substitutes may be derived from human tissue (autologous or allogeneic), xenographic, synthetic materials, or a composite of these materials.Burns, trauma wounds, DFUs, VLUs, pressure ulcers, postsurgical breast reconstruction, bullous diseases

Source: MedMarket Diligence, LLC; Report #S251.

In some cases, the wound may be covered by a black necrotic tissue or yellow sloughy material. These materials develop from dead cells, nucleic acid materials, and denatured proteins. In order for new tissue to be laid down, this dead material needs to be removed. It may be done using hydrolytic debridement using hydrogels that soften the necrotic tissue, or by the use of enzymes. Surgical debridement is another option, but non-surgical debridement has the advantage that it is usually less painful and can be performed with fewer materials, less expertise, and less mess. It is possible to perform non-surgical debridement in the home setting. Debridement can also be performed to selectively remove dead tissue and thus encourage repair. Enzymatic debriders have been able to command a premium price in the market, and built a sizeable share of the wound management market, particularly during the 1990s when treatment in the home environment increased as a result of reductions in hospital-based treatment. These products are described in the section on cleansers and debriders.

Occasionally healthcare practitioners put maggots to work for wound debridement. Though esthetically unpleasant, maggots are very effective debriding agents because they distinguish rigorously between dead and living tissue. Military surgeons noticed the beneficial effect of maggots on soldiers’ wounds centuries ago, but maggot debridement therapy (MDT) as it is practiced today began in the 1920s and has lately been undergoing something of a revival. The maggots used have been disinfected during the egg stage so that they do not carry bacteria into the wound. The larvae preferentially consume dead tissue, they excrete an antibacterial agent, and they stimulate wound healing.

At the other end of the technological scale are skin substitutes, which have been developed to help in the management of extensive wounds such as burns. Autologous skin grafting is a well-established therapeutic technique; postage-stamp-sized sections of healthy skin are cultured and grown in vitro, then placed over the raw wound surface to serve as a focus for re-epithelialization. However, this process takes time; the wound is highly vulnerable to infection while the skin graft is being grown. A number of companies have developed alternatives in the form of synthetic skin substitutes. These are described further in the next section of the report.

A number of products have also been developed to deal with sloughy and infected wounds. These often incorporate antimicrobial agents. Often, infected wounds have a very unpleasant odor; a range of odor control dressings has arisen to deal with this.

Once wounds begin to heal, the amount of exudate starts to decrease. Some dressing products preserve moisture but are also non-adhesive, so that the dressing does not adhere to the new epithelializing skin. These products are called non-adherent dressings and include a range of tulle dressings, which usually consist of a loose weave of non-adherent fabric designed to allow exudates to pass through the gaps. A subgroup of dressings is designed to keep the skin moist in order to reduce scarring after healing.

For wounds that do not appear to be healing, a number of companies have explored the potential to add growth factors and cells to promote and maintain healing. In addition, companies have attempted to use energy sources to accelerate wound healing, and these are described in the section on physical treatments. The main example of physical treatment is the use of devices which apply negative pressure over the wound and have been shown to dramatically shorten the healing of diabetic ulcers and other chronic wounds.

Often, a dressing will serve more than one purpose. Therefore, it is difficult to generalize and collect only dressings that serve one purpose into a single category. For example, Systagenix’s Actisorb Plus (Systagenix is now owned by Acelity) is a woven, low-adherent odor control antimicrobial dressing designed to optimize moist wound healing through its exudates handling properties.


From, Worldwide Wound Management, Forecast to 2024MedMarket Diligence, LLC.

Requirements for acceptance of new peripheral stents in clinical practice

Stents are implantable devices designed as endoluminal scaffolds to maintain patency following recanalization of occluded or structurally compromised vascular (and non-vascular) circulatory conduits that enable energy supply and metabolic exchange in various organs and tissues of the human body. Palliative stenting has been routinely used for decades in the management of acute and chronic obstructions of gastro-intestinal, pulmonary and urinary tracts secondary to benign or malignant neoplasms or other cite-specific or systemic pathologies. However, a real explosion in utilization of stents was triggered in the early 1990s by the advent of vascular stenting devices, which allowed radically improved clinical outcomes of balloon angioplasty and supported its emergence as the first choice treatment modality for occlusive peripheral and coronary artery disease (PAD and CAD). By the end of 2014, more than three quarters of patients with acute and chronic arterial occlusions warranting intervention were referred for angioplasty-based therapy, which entailed placement of stenting devices in over 80% of commonly performed peripheral revascularization procedures.

To be accepted in clinical practices, stenting implants should satisfy a number of general and application-specific requirements relating to device biocompatibility, functional performance, and end-user and patient friendliness which are summarized in the exhibit below. In very general terms, stenting device biocompatibility refers to minimization of hostile immune responses (and other local and systemic adverse reactions) that are inevitably triggered by a direct contact of any implantable medical device with living tissues and bodily fluids in situ. For understandable reasons, biocompatibility depends primarily on the implant surface material, including such characteristics as chemical inertness and stability, corrosion resistance, etc. The stenting device biocompatibility can also be effected somewhat by the duration of its presence in situ and specifics of the deployment site and occlusion causing pathology.

The stent’s functional performance (or ability to maintain adequate scaffolding support and lumen patency for a desired period of time) represents a complex function of the device design/architecture and the relative static and dynamic strength of its base material. The chosen stenting device’s architecture and structural material predetermine it radial strength, longitudinal flexibility, conformability and foreshortening, as well as relative lesion coverage, fatigue and kinking resistance, circulatory flow obstruction, etc.

Finally, the stent’s end-user and patient friendliness are predicated both by the design concept of the delivery system and stenting device and refers to procedural convenience, predictability, safety, morbidity, availability of bail-out options, etc. The commonly acknowledged stenting system characteristics relating to the end-user/patient friendliness include low profile, flexibility, traceability, high radiopacity, compatibility with established transcatheter tools and techniques, ease of use and short learning curve, simplicity of retrieval in case of procedural failure, possibility of emergent /elective conversion to surgery, etc.

Selected Biomedical, Clinical and Technical Requirements
for Stenting Implants

screen-shot-2016-10-04-at-2-36-22-pm

Source: MedMarket Diligence, LLC; Report #V201.

Coronary and venous interventions show inevitable Asia/Pacific dominance

Coronary revascularization, whether by bypass graft or percutaneous coronary intervention, drives an enormous amount of medtech business. Angioplasty catheters, guidewires, and the plethora of devices in cardiothoracic surgery represent many millions in sales annually. Manufacturers pursuing growth in these areas will see big, but slowing growth rates in the U.S., while markets in Asia/Pacific reflect the growing demand for cardio technologies. Already, these markets are surpassing western markets:

screen-shot-2016-10-03-at-2-20-47-pm

Source: Report #C500.

While coronary applications have a long history, venous interventions have less, and procedure data shows that patient populations have not been fully tapped in any geographic region. Already, Asia/Pacific markets would appear to be on course to eclipse western markets, but not until after 2022, and will eclipse Western Europe markets before challenging the U.S.

screen-shot-2016-10-03-at-2-20-38-pm

Source: Report #C500.

Global and Regional Cardiovascular Surgical and Interventional Procedures Forecast; Reveals Cardio Tech Outlook

With few exceptions, cardiovascular technologies no longer command big premiums (like many other medtech sectors) and mature Western markets for cardio devices have already captured most of the readily available patient caseloads. The lines between different markets (device, drugs, materials) are blurring, while surgical specialists seek to slow the caseload migration to interventionalists. The epicenter of growth in utilization of advanced cardiovascular technologies and techniques is gradually shifting to emerging Asia-Pacific markets away from the increasingly stagnant U.S. and Western European marketplace. The latter reflects the sheer size of underserved patient caseloads, availability of funding, and increasing reliance on economical domestically reproduced sophisticated endovascular devices.

“In order to be successful, manufacturers, investors, healthcare providers, advisors, and others in cardiac surgery and endovascular fields need to understand the real dynamics and asymmetrical development pattern of different cardiovascular device markets in different geographies,” says Patrick Driscoll of MedMarket Diligence. “At the root of understanding the market is accurately and realistically gauging the current and future demand for, and likely usage of, specific medical and surgical technologies and procedures.”

MedMarket Diligence has published a comprehensive resource available to manufacturers, investors, and others with interest in cardiovascular technologies. “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022,” is a worldwide competitive analysis and forecast of existing and emerging cardiovascular technologies and procedures coupled with identification and assessment of the most promising and sizable device markets.

The report covers surgical and interventional therapeutic procedures commonly used in the management of acute and chronic conditions affecting the myocardium and vascular system. The latter include ischemic heart disease (and its life threatening manifestations like AMI, cardiogenic shock, etc.); heart failure; structural heart disorders (valvular abnormalities and congenital heart defects); peripheral artery disease (and limb and life threatening critical limb ischemia); aortic disorders (AAA, TAA and aortic dissections); acute and chronic venous conditions (such as deep venous thrombosis, pulmonary embolism and chronic venous insufficiency); neurovascular pathologies associated with high risk of hemorrhagic and ischemic stroke (such as cerebral aneurysms and AVMs, and high-grade carotid/intracranial stenosis); and cardiac rhythm disorders (requiring correction with implantable pulse generators/IPG or arrhythmia ablation).

The report offers epidemiology and mortality data for the major cardiovascular conditions along with current assessment and projected procedural dynamics (2015 to 2022) for primary market geographies (e.g., United States, Largest Western European Countries, and Major Asian States) as well as the rest of the world.

Methodology. The MedMarket Diligence procedural assessments and forecasts are based on the systematic analysis of a multiplicity of sources including (but not limited to):

  • Latest and historic company SEC filings, corporate presentations, and interviews with product management and marketing staffers;

  • Data released by authoritative international institutions (such as OECD and WHO), and national healthcare authorities;

  • Statistical updates and clinical practice guidelines from professional medical associations (like AHA, ACC, European Society of Cardiology, Chinese, Indian, and Japanese Societies of Cardiology, etc.);

  • Specialty presentations at major professional conferences (e.g., TCT, AHA Scientific Sessions, EuroPCR, etc.);

  • Publications in major medical journals (JAMA, NEJM, British Medical Journal, Lancet, etc.) and specialty magazines (CathLab Digest, Endovascular Today, EPLab Digest, etc.);

  • Findings from relevant clinical trials;

  • Feedback from leading clinicians (end-users) in the field on device/procedure utilization trends and preferences; and

  • Policy papers by major medical insurance carriers on uses of particular surgical and interventional tools and techniques, their medical necessity and reimbursement.

AAAandTAA

Surgical and Interventional Procedures Covered:

  • Coronary artery bypass graft (CABG) surgery;

  • Coronary angioplasty and stenting;

  • Lower extremity arterial bypass surgery;

  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting;

  • Peripheral drug-coated balloon angioplasty;

  • Peripheral atherectomy;

  • Surgical and endovascular aortic aneurysm repair;

  • Vena cava filter placement;

  • Endovenous ablation;

  • Mechanical venous thrombectomy;

  • Venous angioplasty and stenting;

  • Carotid endarterectomy;

  • Carotid artery stenting;

  • Cerebral thrombectomy;

  • Cerebral aneurysm and AVM surgical clipping;

  • Cerebral aneurysm and AVM coiling & flow diversion;

  • Left Atrial Appendage Closure;

  • Heart valve repair and replacement surgery;

  • Transcatheter valve repair and replacement;

  • Congenital heart defect repair;

  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices;

  • Pacemaker implantation;

  • Implantable cardioverter defibrillator placement;

  • Cardiac resynchronization therapy device placement;

  • Standard SVT/VT ablation; and

  • Transcatheter AFib ablation

Report #C500, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”, is described in full at link. The report may be purchased for download at link.

For information, contact Patrick Driscoll, +1.949.891.1753 or reports@mediligence.com.

 

Wound management practice patterns, products by wound type

From Report #S251, “Wound Management to 2024”.

Surgical wounds account for the vast majority of skin injuries. We estimate that there are approximately 100 million surgical incisions per year, growing at 3.1% CAGR, that require some wound management treatment. About 16 million operative procedures were performed in acute care hospitals in the USA. Approximately 80% of surgical incisions use some form of closure product: sutures, staples, and tapes. Many employ hemostasis products, and use fabric bandages and surgical dressings.

Surgical procedures generate a preponderance of acute wounds with uneventful healing and a lower number of chronic wounds, such as those generated by wound dehiscence or postoperative infection. Surgical wounds are most often closed by primary intention, where the two sides across the incision line are brought close and mechanically held together. Overall the severity and size of surgical wounds will continue to decrease as a result of the continuing trend toward minimally invasive surgery.

Surgical wounds that involve substantial tissue loss or may be infected are allowed to heal by secondary intention where the wound is left open under dressings and allowed to fill by granulation and close by epithelialization. Some surgical wounds may be closed through delayed primary intention where they are left open until such time as it is felt it is safe to suture or glue the wound closed.

Traumatic wounds occur at the rate of 50 million or more every year worldwide. They require cleansing and treatment with low-adherent dressings to cover the wound, prevent infection, and allow healing by primary intention. Lacerations are a specific type of trauma wound that are generally minor in nature and require cleansing and dressing for a shorter period. There are approximately 20 million lacerations a year as a result of cuts and grazes; they can usually be treated in the doctors’ surgery, outpatient medical center or hospital A&E departments.

Burn wounds can be divided into minor burns, medically treated, and hospitalized cases. Outpatient burn wounds are often treated at home, at the doctor’s surgery, or at outpatient clinics. As a result, a large number of these wounds never enter the formal health service system. According to the World Health Organization (WHO), globally about 11 million people are burned each year severely enough to require medical treatment. We estimate that approximately 3.5 million burns in this category do enter the outpatient health service system and receive some level of medical attention. In countries with more developed medical systems, these burns are treated using hydrogels and advanced wound care products, and they may even be treated with consumer-based products for wound healing.

Medically treated burn wounds usually receive more informed care to remove heat from the tissue, maintain hydration, and prevent infection. Advanced wound care products are used for these wounds. There are approximately 6.0 million burns such as this that are treated medically every year.

Hospitalized burn wounds are rarer and require more advanced and expensive care. These victims require significant care, nutrition, debridement, tissue grafting and often tissue engineering where available. They also require significant follow-up care and rehabilitation to mobilize new tissue, and physiotherapy to address changes in physiology. Growth rates within the burns categories are approximately 1.0% per annum.

Chronic wounds generally take longer to heal, and care is enormously variable, as is the time to heal. There are approximately 7.4 million pressure ulcers in the world that require treatment every year. Many chronic wounds around the world are treated sub-optimally with general wound care products designed to cover and absorb some exudates. The optimal treatment for these wounds is to receive advanced wound management products and appropriate care to address the underlying defect that has caused the chronic wound; in the case of pressure ulcers a number of advanced devices exist to reduce pressure for patients. There are approximately 9.7 million venous ulcers, and approximately 10.0 million diabetic ulcers in the world requiring treatment. Chronic wounds are growing in incidence due to the growing age of the population, and the growth is also due to increasing awareness and improved diagnosis. Growth rates for pressure and venous ulcers are 6%–7% in the developed world as a result of these factors.

Diabetic ulcers are growing more rapidly due mainly to increased incidence of both Type I and maturity-onset diabetes in the developed countries around the world. The prevalence of diabetic ulcers is rising at 9% annually. Every year 5% of diabetics develop foot ulcers and 1% require amputation. The recurrence rate of diabetic foot ulcers is 66%; the amputation rate rises to 12% with subsequent ulcerations. At present, this pool of patients is growing faster than the new technologies are reducing the incidence of wounds by healing them.

Wound management products are also used for a number of other conditions including amputations, carcinomas, melanomas, and other complicated skin cancers, all of which are on the increase.

A significant feature of all wounds is the likelihood of pathological infection occurring. Surgical wounds are no exception, and average levels of infection of surgical wounds are in the range of 7%–10%, depending upon the procedure. These infections can be prevented by appropriate cleanliness, surgical discipline and skill, wound care therapy, and antibiotic prophylaxis. Infections usually lead to more extensive wound care time, the use of more expensive products and drugs, significantly increased therapist time, and increased morbidity and rehabilitation time. A large number of wounds will also be sutured to accelerate closure, and a proportion of these will undergo dehiscence and require aftercare for healing to occur.

For the detailed coverage of wounds, wound management products, companies, and markets, see report #S251, “Worldwide Wound Management to 2024”.

Fixing congenital heart defects on a global scale

Congenital heart abnormalities – which occur in an estimated 1.1% to 1.3% of infants born in the U.S. and worldwide each year – constitute leading cause of birth defect-related deaths. To-date, clinicians have identified and documented almost four dozens distinctive heart defects in newly born ranging from relatively simple and easily correctible abnormalities to complex and multiple anatomical malformations.

The most commonly encountered congenital heart abnormalities accounting for the majority of all diagnosed cases include: ventricular septal defect (VSD); tetralogy of Fallot (TOF); transposition of great vessels (TGV); atrioventricular septal defect (ASD); and coarctation of aorta (COA).

Selection of treatment protocols for congenital heart defects depends on the morphology of the abnormality and its immediate and long-term impact on cardiopulmonary function and patient’s prognosis (threat to survival).

Many asymptomatic patients with minor defects (typically representing unresolved inheritance from normal fetal development, such as trans-septal conduits that are supposed to close at birth) might be put on a “watchful waiting” regime.

Some symptomatic and functionally compromising congenital heart defects can be treated with minimally invasive percutaneous (transcatheter) techniques. To-date, percutaneous repair tools have been developed and clinically tested for several common congenital myocardial abnormalities including: patent ductus arteriosus (PDA), atrial septal defect, ventricular septal defect and patent foramen ovale (PFO). In all instances, the primary objective of the transcatheter approach was to reduce morbidity, mortality and costs associated with the procedure by achieving septal repair or closure via endovascular implantation of specially-configures occluding or sealing devices.

In cases involving complex, debilitating and life threatening congenital myocardial abnormalities (such as Tetralogy of Fallot, transposition of great vessels, etc.) one or several corrective open heart surgeries represent the only route to patient survival. Such surgeries are typically performed during the first year of infant’s life and carry a 5% risk of mortality, on average.

Screen Shot 2016-08-31 at 1.03.22 PM

Source: MedMarket Diligence, LLC; Report #C500, “Global Dynamics of Cardiovascular Surgical and Interventional Procedures, 2015-2022.”

Based on the available industry data and MedMarket Diligence estimates, in 2015, approximately 387 thousand congenital heart defect repair procedures were performed worldwide, of which less invasive transcatheter interventions accounted for about 24.3% and open heart corrective surgeries for the remaining 75.7%.

For the period 2015 to 2022, the cumulative global volume of congenital heart defect repair procedures is projected to grow 1.9% per annum to approximately 444 thousand percutaneous and surgical interventions in the year 2022. The usage of transcatheter procedures can be expected to experience significantly faster 9.0% average annual growth (partially at the expense of corrective open heart surgeries for septal defects), reflecting mostly accelerated transition to minimally invasive percutaneous septal defect repair in APAC and ROW market geographies (where the latter techniques currently used only in 15% to 22% of corresponding procedures, compared to 60% to 75% in Western Europe and the U.S.).

Upside from innovation, emerging markets for sealants, glues, hemostats

A great deal of market development has yet to take place in the field of wound closure, especially for advanced sealants, glues, and hemostats — let’s just for convenience call them “liquid closure” (as opposed to sutures/staples/clips). It is currently in an evolving, growing, consolidating, tweaking state of change, with currently more upside coming out of Asia than from innovations in sealing, adhesion, or hemostasis.

Market players dominant in one geography are absent in others. The rate of market growth arising from innovation lags growth from penetrating emerging markets, where manufacturers have rushed to pick the easy fruit.

Challenges remain in order for “liquid closure” to more deeply penetrate a caseload otherwise served by docs using strong, easy-to-use sutures, clips, and staples. Sealants are terrific in adjunctive use by “caulking” suture lines to ensure nothing leaks between, no matter how strongly the clips, etc. are holding. But the strength of sealing and adhesion are not sufficient for most products to do the job alone. A “liquid closure” must be many things with high standards that have largely yet to be met.

Hemostats, though, given their simple function to keep the life from draining out of people, have succeeded handsomely in saving lives.

For the near term, the growth in liquid closure sales is evident most strongly in Asia, with income and other drivers there giving life to an otherwise staid market, for the time being…

sealants glues hemostat overlap
MedMarket Diligence, LLC; Report #S290.

The Five Highest Growth Cardiovascular Procedures

#5. Cerebral thrombectomy.

The initial use of cerebral thrombectomy systems has been a disappointment. It is generally assumed that the situation with end-user adoption is likely to improve dramatically in two-three years from now, when results of the ongoing major U.S. and international trials with novel cerebral thrombectomy devices become available. Growth will exceed 11% annually through 2022.

#4 Below-the-knee drug-coated balloon angioplasty for superficial femoral artery. 

There is now a broad-based consensus among leading interventional radiologists that peripheral angioplasty using DCBs should be seen as a first-line revascularization option for both primary treatment and revision of advanced arterial occlusions in the SFA vascular territory. This will lead to better than 14% annual growth in these procedures through 2022.

#3 Transcatheter heart valve replacement. 

The use of transcatheter techniques in heart valve replacement and repair is projected to grow at over 14%, to be supported by the anticipated regulatory approval of TAVR procedures for intermediate risk patients in late 2016, and, plausibly, for standard surgical risk caseloads by 2019.

#2 Left atrial appendage endovascular closure in AFib.

The global volume of endovascular LAA closure procedures is projected to experience a robust double-digit growth expanding an average of over 14% annually, nearly doubling to an estimated 52 thousand corresponding interventions in the year 2022. Anticipated strong growth in the endovascular LAA closure utilization will be driven by increasing penetration of the Asian-Pacific (primarily Chinese and Indian) market geography with an extra boost from the recent U.S. launch of transcatheter LAA closure systems. Advances in the mature European market and emerging ROW marketplace are likely to stay below projected average growth rates.

#1 Lower extremity angioplasty and DES procedures.

Lower extremity angioplasty and drug-eluting stenting is forecast to increase almost three-fold from 2016 to 2022.

From 2015 to 2022, the cumulative global volume of PTA procedures is projected to expand an average of 4.2% per annum to year 2022. The cited expansion will be driven largely by a strong annual procedural growth in the APAC region (primarily in China and India undergoing aggressive transition to modern interventional radiology practices), which is forecast to account for about over a third of PTAs performed worldwide in 2022. The U.S. and Western European geographies can be expected to register only a moderate PTA procedural growth to be supported mostly by increasing penetration of the SFA patient caseloads with DES-based interventions, but the worldwide utilization of stented PTAs (especially these employing DES devices) is forecast to grow at significantly faster (4.2% and 19.1%) average annual rates to over 986,000 and 203,000 corresponding procedures in the year 2022.

Screen Shot 2016-08-22 at 8.44.25 AM

Source: MedMarket Diligence, Report #C500.


From “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.” Report #C500.