Category Archives: ablation

treatment via various energy-based (e.g., laser, microwave, ultrasound, radiofrequency, thermal, etc.) technologies to destroy diseased tissue, cauterize blood vessels for hemostasis, create lesions in myocardium to preempt errant electrical signals in arrhythmia and other purposes.

Reconstructive surgery is increasingly aesthetic

Reconstructive surgery is the subset of “plastic” surgery focused on correcting the anatomy, aesthetics, or both, for patients who have been treated for disease or trauma, which sets it apart from purely aesthetic procedures performed for people wishing to improve their appearance above and beyond what they were given by birth (excluding congenital defects) or to reduce the signs of aging.

Given the volume of the non-clinically-indicated aesthetic procedures, and their increasingly sophisticated techniques and technologies, reconstructive surgery specialists have integrated aesthetics advances and can now achieve spectacular results that go well beyond the simple reconstructive procedures of the past, which were much less effective in concealing the trace evidence of disease and trauma.

By far, the most common reconstructive procedures are to address the physical appearance resulting from the removal of tumors. In the U.S. alone, reconstruction for tumor removal is performed over 4 million times annually. The remainder of reconstructive procedures covers a gamut of major and minor trauma and diseases.

Below is the distribution of non-aesthetic (only) reconstructive procedures in the U.S.

reconstructive-pie

Source: MedMarket Diligence, LLC; Report #S710.

Through 2018, the global medical reconstructive and aesthetic products market is expected to reach a value of about $10.7 billion. Energy-based products such as lasers will experience the highest growth level. In most geographical regions and particularly in the U.S. and Europe, there is a growing consumer demand for medical cosmetic procedures and through 2020, even the lower income groups are likely to demand for more procedures, as the treatments become increasingly main stream. During the past few years, practitioners in the U.S. were rather forced to implement discounts and now with the revival of the economy, the total fee growth is likely to rebound. Successful companies in the sector mostly rely on a formula for continued research and development, pursuing additional, new business opportunities to increase expertise and product offerings. These companies remain solidly active in the eyes of high-end dermatologists, plastic and cosmetic surgeons.  As the aesthetic market is all about new products, the companies will be left behind, if they do not come up a new product every now and then.


This post is drawn from, “Global Markets for Products and Technologies in Aesthetic and Reconstructive Surgery, 2013-2018″, Report #S710, published by MedMarket Diligence, LLC.  For details, see link/a>.

Shifting demand, sales in aesthetics and reconstructive products markets

Data from our report, “Global Markets for Products and Technologies in Aesthetic and Reconstructive Surgery, 2013-2018″, illustrates the changing demand for different procedures in aesthetics and reconstructive medicine, which is resulting in projected shifts in the sales of products.

Below is are the compound annual growth rates (CAGRs) for North American sales in the major types of aesthetic and reconstructive procedures.

Screen Shot 2014-05-29 at 10.44.45 AM

Source: MedMarket Diligence, LLC; Report #S710.

Where will medicine be 20 years from now?

My answer (edited) from this question on Quora.

I can speculate on this from the perspective of clinical practice and medical technology, but it should be first noted that another, important determinant of “where medicine will be” is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries and the demands they put on healthcare delivery work directly against quality of care. So, whether it is Obamacare, a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective.

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions.
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.
  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.
  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice translumenal endoscopic surgery will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.
  • Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.


There will be many more unforeseen medical advances achieved within 20 years, many arising from research that may not even be imagined yet. However, the above advances are based on actual research and/or the advances that have already arisen from that research.

Medtech Market Reports for the Resource-Constrained

As often as I gather data on medtech startups, I find myself frequently talking to eager entrepreneurs who are very enthusiastic about their technologies while confidentially bemoaning how hard it is to operate when they are pre-funded or otherwise bootstrapped.

I also frequently connect with academics, many working on their “thesis” and in dire need of market data but unable to afford the full list prices on our market and technology reports (which I find dubious unless their email address ends in “.edu”).

Therefore, it seemed appropriate that I find a way to satisfy these eager would-be or otherwise cash-strapped entrepreneurs with a means to get useful data to help guide their businesses and even, potentially, support their fundraising efforts. What I have come up with is a selection of our full scale, global, proprietary market reports and made them available at what I’ve termed the “market starter” price of $125 each. These reports are indeed the full reports (300 to 500 pages in length, typically market priced at $3,000 or higher), but they are two or more years old — still eminently relevant in the broad coverage of market size, growth and, in particular, forecasts.

Thus far the topics of these Market Starter reports are:

  • Ablation Technologies
  • Spine Surgery
  • Obesity Management
  • Diabetes Management
  • Tissue Engineering & Cell Therapy

These reports are listed with links to the full descriptions and tables of contents, at link.

The Aesthetics & Reconstructive Surgery Products Global Market

Global medical aesthetic products are to achieve sales of more than $6.5 billion in 2013. Through 2018 the market is expected to reach a value of about $10.7 billion. Europe has been witnessing relatively a slower growth of 6.6% per year. Declining purchasing power, particularly in southern Europe affects the European market and this geographical segment is estimated at $1.84 billion in 2013 to reach $1.94 billion in 2018. The U.S. and the Latin America markets will have a CAGR close to 10%. The U.S. and Latin America will experience a growth respectively of 9.2% and 10% in line with global trends. The U.S. market still represents 45% of the global market.

Screen Shot 2014-04-15 at 7.27.04 AMThe Asia/Pacific region will have an overall CAGR of more than 14.1%. Asia will experience the strongest growth through 2018 and exceed the level of the European market in 2018 to $2.24 billion. Overall, the annual growth of the world market between 2013 and 2018 should be 10% to $10.7 billion.

The injectable products (botulinum toxin and fillers mainly hyaluronic acid) constitute the top market segment in value and will have a CAGR of 10.8% until 2018, thus confirming their constant development potential. Since 2012, the toxins market marginally exceeded the dermal fillers market in the world but with a few exceptions such as Europe. The main markets for injectable products by decreasing order are the U.S., E.U., Asia and South America.

The energy-based devices (laser, radiofrequency, ultrasounds) will have an average CAGR of 10.3% until 2018. The sub-segment of body contouring devices will have an average CAGR of 12.1% until 2018. It should represent as nearly half of the activity-based equipment energy by 2018. The main markets for energy-based devices by decreasing order are the U.S., E.U. Asia and South America.

The cosmeceuticals (active cosmetics) will follow the same trend as the injectable products. The major markets for active cosmetics in decreasing order are the U.S., Asia, South America and the E.U. The market for active cosmetics in 2013 and 2018 will be $1,026 million and $1,677 million respectively. The breast implants will have a reduced progression of 5.2% per year until 2018. The major markets for breast implants by decreasing order are the U.S., South America, E.U. and Asia. The 2013 and 2018 market for breast implants will be about $1,066 and $1,370 million respectively. The two most popular cosmetic surgery procedures are still, in the world as well as for each geographical area, the liposuction and the breast augmentation with prosthetic implants. Breast implants experienced a slowdown of about 9% mainly due to concerns about the safety of their components, but this suspicion seems to disappear gradually in recent months.

More limited surgical procedures now are performed in the face, arm, or the internal face of thighs. The goal is primarily to make a change with a natural result. For the face it is readily associated with fat injection to recover volumes. Minimal invasive therapies enjoy a strong growth in 2013, especially with the new botulinum toxin. Alternative techniques to the toxin as cryomodulation begin to develop. The non-invasive techniques are increasingly linked to each other: toxin for the upper face and hyaluronic acid for the lower face, willingly associated with rejuvenation and retightening techniques of the skin by radio frequency and light peels. Far from being opposed to surgery, these techniques maintain surgery result. There is strong growth of surgical cosmetic procedures for men and women above 50 years old in Western countries due to the demand for anti-aging treatment and social pressure. These procedures increased from 28% to 36% between 2005 and 2011, this demand is also significant for invasive treatments and non-invasive.

From “Global Markets for Products and Technologies in Aesthetic and Reconstructive Surgery, 2013-2018″, Report #S710, published by MedMarket Diligence, LLC.

Ablation technology regional growth to 2019

In our analysis of the global market for the spectrum of ablation technologies – Electrical, Radiation, Light, Radiofrequency, Ultrasound, Cryotherapy, Thermal (other than cryo), Microwave, and Hydromechanical — we assessed the size and growth of sales of these technologies with specificity to a large number of regions and countries:

  • U.S.A.
  • Canada
  • Brazil
  • Mexico
  • Germany
  • United Kingdom
  • France
  • Italy
  • Spain
  • BeNeLux
  • Japan
  • China
  • India
  • Australia
  • Rest of World

Below, we illustrate, ranked from low to high, the compound annual growth rates of each geography/technology combination.  This data reflects the strong trends that exist for clinical adoption and sales growth of specific technologies, driven by the unique combination of country-specific and technology-specific forces.

Source: Report #A145, MedMarket Diligence, LLC.

Global Energy-based Ablation Devices Markets, Forecast to 2019

The global market for energy-based ablation devices in 2011 stood at $11.5 billion.

“Ablation” is considered in the context of medical technology to be a therapeutic destruction and sealing of tissue. As general as this effect on tissue can be, its clinical applications — from cancer to cardiology, urology to ophthalmology and all manner of general surgical procedures — is as broad a therapeutic range as any medical technology on the market.

The technologies represented in clinical practice are, by type of energy:

  • Electrical
  • Radiation
  • Light
  • Radiofrequency
  • Ultrasound
  • Cryotherapy
  • Thermal (other than cryotherapy)
  • Microwave
  • Hydromechanical

The MedMarket Diligence report #A145, “Ablation Technologies Worldwide Market, 2009-2019″, is considered the most comprehensive global report on the products, technologies, and the current and forecast global, regional and country-specific markets.  In this report, the market for the spectrum of ablation technologies has been analyzed, considering current and emerging products and companies, by modality (energy type) and country to 2019.

The dominant market is the U.S., representing a full 43% of the global market (and for this reason needs to be shown on a different y-axis scale than all other country markets for ablation) :

US_Ablation

Source: Report #A145.