The Regimens for Assessing and Treating Wound Types

Wound treatment starts with diagnosis. Acute wounds are often surgically created, or dealt with in accident and emergency (A&E) settings. Diagnosis in the acute scenario usually focuses on cleanliness and tidying of the wound edges to enable securement using sutures or glue products. If major trauma has occurred, hemostats and sealants may be required. In the chronic scenario, diagnosis is a process that occurs at every treatment session. The practitioner will examine size, appearance and odor changes to the wound, and from this process determine the ideal management. In addition, it is likely that the physician will take samples to send for microbial assessment if infection becomes a concern.

Following diagnosis and assessment, treatment will be established based on known efficacy and cost of individual dressings, knowledge of the potential products that may be used, and their availability. This will be determined by reimbursement, local purchasing decisions, and resources.

For chronic wounds, treatment often involves symptoms; many products are designed to remove aesthetically unpleasant aspects of wounds such as exudates, smell, and visibility.

Management of exudates also has a wound-healing benefit. Too much exudate leads to hydrolytic damage and maceration of the tissue and surrounding skin. Too little moisture leads to drying out of the wound and cell death. As a result, many advanced wound management products have been developed to optimize the moist wound healing environment. As a huge variety of wound conditions arise, a large number of dressings has been developed to help manage the full range of circumstances that may be encountered. These include dressings made from foams, polyurethane films, alginates, hydrocolloids, and biomaterials to manage exudates, which may be present in vast quantities (perhaps as much as two liters per square meter per day). Other products are designed to moisten the wound to optimize healing (amorphous hydrogels for example).

Much of the advanced wound management market has evolved to improve exudates management in the home setting, in order to reduce the need for visits by practitioners and the associated cost.

Types and Uses of Select Wound Care Products

    
Dressing categoryProduct examplesDescriptionPotential applications
FilmHydrofilm, Release, Tegaderm, BioclusiveComes as adhesive, thin transparent polyurethane film, and as a dressing with a low adherent pad attached to the film.Clean, dry wounds, minimal exudate; also used to cover and secure underlying absorptive dressing, and on hard-to-bandage locations, such as heel.
FoamPermaFoam
PolyMem
Biatain
Polyurethane foam dressing available in sheets or in cavity filling shapes. Some foam dressing have a semipermeable, waterproof layer as the outer layer of the dressingFacilitates a moist wound environment for healing. Used to clean granulating wounds which have minimal exudate.
HydrogelHydrosorb Gel Sheet, Purilon, Aquasorb, DuoDerm, Intrasite Gel, GranugelColloids which consist of polymers that expand in water. Available in gels, sheets, hydrogel-impregnated dressings.Provides moist wound environment for cell migration, reduces pain, helps to rehydrate eschar. Used on dry, sloughy or necrotic wounds.
HydrocolloidCombiDERM, Hydrocoll, Comfeel, DuoDerm CGF Extra Thin, Granuflex, Tegasorb, Nu-DermMade of hydroactive or hydrophilic particles attached to a hydrophobic polymer. The hydrophilic particles absorb moisture from the wound, convert it to a gel at the interface with the wound. Conforms to wound surface; waterproof and bacteria proof.Gel formation at wound interface provides moist wound environment. Dry necrotic wounds, or for wounds with minimal exudate. Also used for granulating wounds.
AlginateAlgiSite, Sorbalgon Curasorb, Kaltogel, Kaltostat, SeaSorb, TegagelA natural polysaccharide derived from seaweed; available in a range of sizes, as well as in ribbons and ropes.Because highly absorbent, used for wounds with copious exudate. Can be used in rope form for packing exudative wound cavities or sinus tracts.
AntimicrobialBiatain Ag
Atrauman Ag
MediHoney
Both silver and honey are used as antimicrobial elements in dressings.Silver: Requires wound to be moderately exudative to activate the silver, in order to be effective
NPWDSNa
V.A.C. Ulta
PICO
Renasys (not in USA)
Prospera PRO series
Invia Liberty
Computerized vacuum device applies continuous or intermittent negative or sub-atmospheric pressure to the wound surface. NPWT accelerates wound healing, reduces time to wound closure. Comes in both stationary and portable versions.May be used for traumatic acute wound, open amputations, open abdomen, etc. Seems to increase burn wound perfusion. Also used in management of DFUs. Contraindicated for arterial insufficiency ulcers. Not to be used if necrotic tissue is present in over 30% of the wound.
Bioengineered Skin and Skin SubstitutesAlloDerm, AlloMax, FlexHD, DermACELL, DermaMatrix, DermaPure, Graftjacket Regenerative Tissue Matrix, PriMatrix, SurgiMend PRS, Strattice Reconstructive Tissue Matrix, Permacol, EpiFix, OASIS Wound Matrix, Apligraf, Dermagraft, Integra Dermal Regeneration Template, TransCyteBio-engineered skin and soft tissue substitutes may be derived from human tissue (autologous or allogeneic), xenographic, synthetic materials, or a composite of these materials.Burns, trauma wounds, DFUs, VLUs, pressure ulcers, postsurgical breast reconstruction, bullous diseases

Source: MedMarket Diligence, LLC; Report #S251.

In some cases, the wound may be covered by a black necrotic tissue or yellow sloughy material. These materials develop from dead cells, nucleic acid materials, and denatured proteins. In order for new tissue to be laid down, this dead material needs to be removed. It may be done using hydrolytic debridement using hydrogels that soften the necrotic tissue, or by the use of enzymes. Surgical debridement is another option, but non-surgical debridement has the advantage that it is usually less painful and can be performed with fewer materials, less expertise, and less mess. It is possible to perform non-surgical debridement in the home setting. Debridement can also be performed to selectively remove dead tissue and thus encourage repair. Enzymatic debriders have been able to command a premium price in the market, and built a sizeable share of the wound management market, particularly during the 1990s when treatment in the home environment increased as a result of reductions in hospital-based treatment. These products are described in the section on cleansers and debriders.

Occasionally healthcare practitioners put maggots to work for wound debridement. Though esthetically unpleasant, maggots are very effective debriding agents because they distinguish rigorously between dead and living tissue. Military surgeons noticed the beneficial effect of maggots on soldiers’ wounds centuries ago, but maggot debridement therapy (MDT) as it is practiced today began in the 1920s and has lately been undergoing something of a revival. The maggots used have been disinfected during the egg stage so that they do not carry bacteria into the wound. The larvae preferentially consume dead tissue, they excrete an antibacterial agent, and they stimulate wound healing.

At the other end of the technological scale are skin substitutes, which have been developed to help in the management of extensive wounds such as burns. Autologous skin grafting is a well-established therapeutic technique; postage-stamp-sized sections of healthy skin are cultured and grown in vitro, then placed over the raw wound surface to serve as a focus for re-epithelialization. However, this process takes time; the wound is highly vulnerable to infection while the skin graft is being grown. A number of companies have developed alternatives in the form of synthetic skin substitutes. These are described further in the next section of the report.

A number of products have also been developed to deal with sloughy and infected wounds. These often incorporate antimicrobial agents. Often, infected wounds have a very unpleasant odor; a range of odor control dressings has arisen to deal with this.

Once wounds begin to heal, the amount of exudate starts to decrease. Some dressing products preserve moisture but are also non-adhesive, so that the dressing does not adhere to the new epithelializing skin. These products are called non-adherent dressings and include a range of tulle dressings, which usually consist of a loose weave of non-adherent fabric designed to allow exudates to pass through the gaps. A subgroup of dressings is designed to keep the skin moist in order to reduce scarring after healing.

For wounds that do not appear to be healing, a number of companies have explored the potential to add growth factors and cells to promote and maintain healing. In addition, companies have attempted to use energy sources to accelerate wound healing, and these are described in the section on physical treatments. The main example of physical treatment is the use of devices which apply negative pressure over the wound and have been shown to dramatically shorten the healing of diabetic ulcers and other chronic wounds.

Often, a dressing will serve more than one purpose. Therefore, it is difficult to generalize and collect only dressings that serve one purpose into a single category. For example, Systagenix’s Actisorb Plus (Systagenix is now owned by Acelity) is a woven, low-adherent odor control antimicrobial dressing designed to optimize moist wound healing through its exudates handling properties.


From, Worldwide Wound Management, Forecast to 2024; MedMarket Diligence, LLC.