Cellular Growth Factors in the Wound Management Market

From a previous post on growth factors in wound management, we highlight this due to a recent burst of activity in research leading to commercial products.

Extensive research has demonstrated that wound fluid is rich in growth factors. Growth factors are naturally occurring proteins found primarily in platelets and macrophages. They are needed for normal wound healing to promote growth and migration of fibroblasts, endothelial cells and keratinocytes. The functions of growth factors include; attraction of cells to the wound site (chemotaxis), stimulation of cell division/ proliferation (mitogenic competence/progressive), differentiation of cells into specific phenotypes (transformation), and stimulation of cells to perform functions or secrete other growth factors. Growth factors bind to receptors on the cell surface where they activate cellular proliferation and/or differentiation. There are a number of growth factors which are involved in wound healing at different points in time. Many are quite versatile and capable of stimulating cellular division in different cell types; others are specific to a particular cell type.

Growth factors applied to wound management fall into the following categories:


Epidermal growth factor (EGF)Activated macrophages. Salivary glands. KeratinocytesKeratinocyte and fibroblast mitogen. Keratinocyte migration. Granulation tissue formation
Transforming growth factor-? (TGF-?)Activated macrophages. T-lymphocytes. KeratinocytesHepatocyte and epithelial cell proliferation. Expression of antimicrobial peptides. Expression of chemotactic cytokines
Hepatocyte growth factor (HGF)Mesenchymal cellsEpithelial and endothelial cell proliferation. Hepatocyte motility
Vascular endothelial growth factor (VEGF)Mesenchymal cellsVascular permeability. Endothelial cell proliferation
Platelet derived growth factor (PDGF)Platelets. Macrophages. Endothelial cells. Smooth muscle cells. KeratinocytesGranulocyte, macrophage, fibroblast and smooth muscle cell chemotaxis. Granulocyte, macrophage and fibroblast activation. Fibroblast, endothelial cell and smooth muscle cell proliferation. Matrix metalloproteinase, fibronectin and hyaluronan production. Angiogenesis. Wound remodeling. Integrin expression regulation
Fibroblast growth factor 1 and 2 (FGF-1, FGF2)Macrophages. Mast cells. T-lymphocytes. Endothelial cells. FibroblastsFibroblast chemotaxis. Fibroblast and keratinocyte proliferation. Keratinocyte migration. Angiogenesis. Wound contraction. Matrix (collagen fibers) deposition
Transforming growth factor-? (TGF-?)Platelets. T-lymphocytes. Macrophages. Endothelial cells. Keratinocytes. Smooth muscle cells. FibroblastsGranulocyte, macrophage, lymphocyte, fibroblast and smooth muscle cell chemotaxis. TIMP synthesis. Angiogenesis. Fibroplasia. Matrix metalloproteinase production inhibition. Keratinocyte proliferation
Keratinocyte growth factor (KGF)KeratinocytesKeratinocyte migration, proliferation and differentiation

Source: MedMarket Diligence, LLC; Report #S249

The emergence and rapid adoption of growth factors in wound management is testimony to the expectation that they will hasten wound healing and result in better outcomes, lowered cost or both. While the market for growth factors in wound management is largely represented by the U.S. market (as with most advanced medical technologies), economics, technology diffusion and other forces will lead to more rapid growth in the use of these products in Asia/Pacific (in particular, China will see strong growth, given that powerhouse country’s propensity to bypass progressive development in favor of very rapid adoption of new technologies).

Distribution of Wound Growth Factor Markets, 2013 & 2021


Source: MedMarket Diligence, LLC; Report #S249

Feel free to contact us directly if you have further questions on the wound management market.

Leave a Reply