Ablation and other energy-based medical technologies worldwide

The world market for energy-based devices was well in excess of $25 billion in 2008. This represents almost 14% of the total medical device market; however, the share varies from country to country, since ablation therapy is high-technology and fairly high-cost; in poorer economies low-cost medical products such as syringes and consumables account for a relatively higher share of the medical market.

Analyses of the medical market by product category typically divide it into a small number of broad product classes such as electromedical equipment; syringes, needles and catheters; medical consumables; etc. The products included in "energy-based therapies" are divided among several of these categories.

Energy-based devices are of nine main categories, and the market share by category.

Worldwide Ablation and Other Energy-based Device Market by Product Category

ablation-segments

Source:  MedMarket Diligence, LLC; Report #A125, "Ablation Technologies Worldwide Market, 2008."
 

Ultrasonic energy offers superior control of energy output. 3D control and directionality of the energy delivered provides the ability to treat a prescribed target volume and shape which is critical for tumor ablation as increased energy penetration into the target tissue enables the treatment of larger tumor volumes and reduces treatment times. Peripheral and coronary vascular occlusive conditions that afflict tens of millions of people worldwide are now being treated with technologies that enable the delivery of ultrasonic energy over the active length of a small diameter guidewire-like device in an occluded blood vessel. The popularity of ultrasonic surgical systems is being driven by their inherent advantages. These systems control bleeding by coaptive coagulation at low temperatures ranging from 50ºC to 100ºC. Coagulation occurs by means of protein denaturation as opposed to thermal welding and the absence of smoke improves the visual field.

Cryogenic energy or the extreme absence of heat is very attractive as it is highly containable and thus localized. Cryoablation can be safely employed adjacent to delicate tissue and structures such as certain vasculature. Cryoablation may eliminate many of the problems seen in treating complex arrhythmias such as pulmonary vein stenosis. Cooling freezes tissue and does not seem to cause extracellular matrix changes or damage to the endocardium, which may lower clot-related complications. Thanks largely to advances in ultrasound, which allows physicians to target diseased tissue with pinpoint accuracy, and temperature control, which allows physicians to destroy the diseased tissue without harming the surrounding healthy tissue, cryoablation has become the fastest growing minimally invasive option for prostate cancer patients.

Microwave energy offers the inherent advantage of accommodating parallel delivery points. An increased treatment area can be treated with microwave energy very efficiently. Microwave probes are ideally suited for a full spectrum of cardiac ablation procedure from simple pulmonary vein isolation in paroxysmal AF to a full Maze for permanent AF. Energy delivery times are short, on the order of 25 to 60 seconds, and the unidirectionality of the microwave ensures the protection of surrounding tissues during epicardial application–a significant requirement for beating-heart application. Microwave energy is also being used as a transurethral therapy to treat BPH.

Light energy is being harnessed and focused for a variety of therapeutic applications. CO2 lasers are being used to revascularize injured myocardial tissue while excimer lasers are being adapted to atherectomy catheters that can clear thrombosis and reperfuse vessels. Over 2 million individuals seek the therapeutic benefits of laser vision correction each year; low level “cold” lasers are being employed to treat chronic pain relief for debilitating conditions like carpal tunnel syndrome–a leading cause of lost workdays. Intense pulsed light (IPL) that affects subtle changes in collagen is being used to treat vascular and pigmentation irregularities.

Hydromechanical energy systems that jet streams of saline only five one-thousandths of an inch in diameter — about the thickness of a human hair–can precisely dissect tissue, sparing vessels and nerves, and are being employed for hepatic resection and nerve-sparing retropubic radical prostatectomy. This modality does not cause thermal damage to tissue and can sculpt, ablate and cauterize bleeders.

Radiation energy using focused arrays of intersecting beams of gamma radiation is being used to treat lesions within the brain. Radiosurgery devices that can ablate otherwise untreatable tumors and malformations when directed by computers are finding otherwise untreatable lesions.

Thermal energy is employed successfully to treat menorrhagia due to benign causes in premenopausal women. When tissue is heated above 46°C, cellular protein denatures and the cell dies. Thermal uterine balloon therapy offers a less-invasive option that allows women to preserve their uterus. Thermal therapy is also being employed for breast and prostate cancer. Implants made of ferromagnetic material that can be “turned-on” when placed within an electromagnetic field and heated in situ offer a high degree of specificity with respect to the treated tissue area.

Electrical energy delivered by small implants can deliver a life saving jolt of electricity to shock a patient’s heart back to normal when rhythmic disturbances of the lower heart chambers that can cause sudden cardiac death are detected. Similar devices deliver electrical energy to speed up a heart beating too slowly. Image-guided radiofrequency ablation which uses heat to destroy diseased tissue can preserve kidney function and avoid kidney dialysis for patients with solid renal tumors who are not surgical candidates.

Radiofrequency energy is gaining widespread use in the field of sports medicine surgery for the thermal modification of soft tissue structures within the joint. The use of radiofrequency energy for thermal chondroplasty has gained tremendous popularity because of the quality of the therapy. Radiofrequency surgical systems have the inherent ability to seal large vessels as a result of the tremendous temperatures the energy can generate.
 

Leave a Reply