Medtech Fundings, September 2015

Medtech fundings for September 2015 have jumped off at a fast pace and now stand at $457 million, with fundings led by the $300 million IPO of NovoCore, followed by the $100 Series C for CeQur.

Below are the top fundings for the month thus far. Please revisit this post and refresh your browser to see additional fundings during the month.

COMPANY, FUNDING PRODUCT/TECHNOLOGY
NovoCure has registered for a $300 million IPO, according to press reports Tumor treating fields, employ low-intensity, alternating fields to treat cancer
CeQur Corp. has raised $100 million in a Series C round of funding according to the company Insulin infusion device for type 2 diabetes
Ivenix, Inc., has raised $42 million in a round of funding according to the company Infusion technologies

For the complete list of medtech fundings in September 2015, see link.

For a historical list of the individual fundings in medtech, by month, since 2009, see link.

The Future (Ours) is in China for Medtech

The importance of China in the global economy became apparent this week, with the ups and downs of its economic state tripping the hair trigger that financial markets have for the huge nation’s growth market.

But in hard terms, what does that mean? As an example, look at spine surgery technology and compare the forecasted growth in sales in China not against the much lower U.S. market but against other high-growth Asia-Pacific markets such as India and Japan. Below is the balance of spine surgery technology sales (encompassing cervical fusion, thoracolumbar implants, minimally invasive spinal fusion, interbody fusion, and orthobiologics) for 2014 and forecasted for 2021 for China, India, and Japan.

Spine Surgery Sales by Country, 2014 & 2021

Screen Shot 2015-09-02 at 2.15.28 PM

Source: MedMarket Diligence, LLC; Report #M540

The size of the pie slices should say enough, knowing what countries we are talking about, but in hard numbers, Japan’s annual sales in 2021 will be $243 million higher than they were in 2014, but by comparison, China’s 2021 spine surgery sales will be $536 million higher than in 2014.

It is evident that China has made great advances in the quality and quantity of research work and in the development of its medical industry and the provision of healthcare in China. According to the International Monetary Fund the gross domestic product of China was over $8,230 billion in 2012 and as a result China has become the world’s second largest economy. China’s life sciences markets have shown particularly aggressive growth in absolute terms, with the country’s reagents and analytical laboratory instruments showing growth in the 15% to 20% range. The Chinese pharmaceutical market is growing at 13.1% through 2020 (Source: McKinsey) and projected growth in the in vitro diagnostics market in China is at 10%.

The overall size and growth in China’s medtech market, including spine surgery, demands a business strategy to gain sales there, since no other market worldwide is expected to drive so much new revenue.

 

 

Medical technologies under development at startups, August 2015

Below is a list of the technologies under development at medical technology startups identified in August 2015 and added to the Medtech Startup Database.

  • Non-hormonal, non-invasive treatment for vaginal dryness and atrophy.
  • Vascular access technology for hemodialysis and oncology.
  • Stents for peripheral vascular disease.
  • Combined ultrasound guidance and interventional access probe.
  • Transendoscopic and laparoscopic instrumentation.
  • Device for real-time monitoring of blood loss.
  • Hand-held blood velocity, blood oxygen and heart rate monitor
  • Endovascular navigation.

For a historical listing of medical technologies at startups since 2008, see link.

Medtech: Numbers and Size of Fundings, Jan-Aug 2015

Fundings in medtech in 2015 follow a common pattern in that most fundings are between $1 million and $5 million — in 2015 thus far, we have identified 111 separate fundings in the $1M-$5M range — with the aggregate value of all fundings in this range being $286 million. However, the size category with the highest cumulative fundings is fundings at $25 million to $50 million, of which there were 41 separate fundings, reflecting an aggregate of $1.36 billion.

Screen Shot 2015-08-30 at 9.34.47 AM

Source: MedMarket Diligence, LLC; see specifics in August 2015 fundings and historical fundings.

By comparison, below is the graph of numbers and totals of fundings for the same period in 2014.

Screen Shot 2015-08-30 at 9.37.25 AM

Source: MedMarket Diligence, LLC

Global Growth in Spine Surgery

Spine surgery is a relatively mature market — all segments of the spine can be treated, significant share has been garnered by a few major companies, and there are no radically new technologies disrupting current market positions. Yet, trends in the patient population, the active innovation by all companies (large and small), the fact that it remains an invasive procedure (even the best minimally invasive approaches have room for improvement), and the accelerating migration of advanced spine technologies to developing non-U.S. markets are all reasons why this “mature” market is anything but stagnant.

Success in applying minimally invasive approaches to spine fusion has opened up procedure volumes for more patients, resulting in the fastest growing area of spine fusion sales. Fusion devices are strong worldwide, with the non-U.S. markets lagging in volumes, but growing at markedly faster rates.

Below is illustrated the segment growth rates for major geographic regions.

Screen Shot 2015-08-27 at 8.39.15 AM

Source: MedMarket Diligence, LLC; Report #M540

The result of the faster non-U.S. growth is that the dominance of U.S. spine surgery markets will decline over the next decade. Below is the change in the share of the global spine surgery market represented by each reach from 2014. For example,  the U.S. market will lose 6% of the global market between 2014 and 2021, while Asia-Pacific will gain roughly 5%.

Screen Shot 2015-08-27 at 7.46.20 AM

Source: MedMarket Diligence, LLC; Report #M540

 

 

Global Spine Surgery Finding Double Digit Growth from Innovation, Economics, and Clinical Trends According to MedMarket Diligence Report

[August 21, 2015 — Mission Viejo  CA — MedMarket Diligence has published its 2015 global report on spine surgery. For details, see link.]

Decades of clinical research and medtech innovation have combined to offer solutions for every segment of the spine.  Economics and innovation have also made spine surgery one of the strongest growth of all medtech markets. MedMarket Diligence’s new global report on spine surgery device markets reveals opportunities for established, emerging, and potential medtech players.

Screen Shot 2015-08-24 at 2.03.50 PM

Screen Shot 2015-08-24 at 2.10.34 PMThe $9.17 billion global market for cervical fusion, thoracolumbar Implants, MIS spine fusion, interbody fusion, and orthobiologics has evolved dramatically over the last several decades as a result of significant advances in the understanding of spinal biomechanics, the proliferation of sophisticated spinal instrumentation devices, surgical advances in bone fusion techniques, refinement of anterior approaches to the spine and the emergence and development of microsurgical, minimally invasive methods and robotics. As a result of these advances it is now possible to stabilize every segment of the spine successfully, regardless of the offending pathology. The global market for spine surgery devices is detailed in the MedMarket Diligence report, “Global Market for Medical Device Technologies in Spine Surgery, 2014-2021.” See Report #M540.

“While this market may be dominated by the bigs — Medtronic, DePuy, Stryker, Zimmer-Biomet, et al. – there remains more than enough business in spine technology to attract a remarkably large number of mid-tier and smaller market participants,” says Patrick Driscoll of MedMarket Diligence. “And there are ample participants who do not accept the status quo, by aggressively innovating and introducing clinical and economic improvement in spine surgery.”

Spine fusion is the fastest growing technology in spine surgery and with growth in spine surgery being fastest in the Asia-Pacific and Central/Latin America, the growth of spine fusion in those areas is double-digit. The improvements in spine surgery and technology development have produced steady growth in volumes of surgeries, supported by reimbursement and clinical outcomes (and the increasingly active aging population). Spine surgery, with its exponential growth, has been the answer to an orthopaedic industry seeking to optimize earnings and add value for shareholders.

The MedMarket Diligence report, “Global Market for Medical Device Technologies in Spine Surgery, 2014-2021: Established and Emerging Products, Technologies and Markets in the Americas, Europe, Asia/Pacific and Rest of World,” (report #M540) is a detailed market and technology assessment and forecast of the products and technologies in the management of diseases and disorders of the spine. The report describes the diseases and disorders of the spine, characterizing the patient populations, their current clinical management, and trends in clinical management as new techniques and technologies are expected to be developed and emerge.

The report details the currently available products and technologies, and the manufacturers offering them. The report details the products and technologies under development and markets for each in spine surgery. The report provides a current and forecast assessment by region/country of procedures and manufacturer revenues for, specifically, Americas (United States, Rest of North America, Latin America), European Union (United Kingdom, Germany, France, Italy, Spain, Rest of Europe), Asia-Pacific (Japan, China, India, Rest of Asia/Pacific) and Rest of World. The forecast addresses the product- and country-specific impacts in the market of new technologies through the coming decade.

The report profiles 38 of the most notable current and emerging companies in this industry, providing data on their current products, current market position and products under development. The products and activities of numerous additional startup and emerging companies are also detailed in the report.

The report is described in detail at http://www.mediligence.com/rpt/rpt-m540.htm and may be ordered for immediate download from https://www.mediligence.com/store/page51.html.


Until August 28, 2015, Report #M540 is available for $500 off the list price. See Spine Surgery 2015 (M540) $500 off early release

Global Markets for Medical Devices in Spine Surgery, Forecast to 2021

The market for spinal implants and associated spinal fusion products has evolved dramatically over the last several decades as a result of significant advances in the understanding of spinal biomechanics, the proliferation of sophisticated spinal instrumentation devices, surgical advances in bone fusion techniques, refinement of anterior approaches to the spine and the emergence and development of microsurgical, minimally invasive methods and robotics. As a result of these advances it is now possible to stabilize every segment of the spine successfully, regardless of the offending pathology.

Prior to these developments, the orthopedic industry had traditionally regarded spinal surgery as a “Cinderella” segment that — far from being a major market segment — was almost regarded as a service area supporting a relatively small number of highly specialized surgeons focusing on the clinical issues associated with the vertebral column. In contrast, by the beginning of the new millennia it became clear that an orthopaedic industry seeking to provide optimized earnings and value to share holders had identified this area as a major unmet need in which the demand to resolve an increasingly wide range of spinal conditions was growing exponentially.

In response to these developments, and in recognition that the market for spinal implants and associated spinal fusion products was and is growing, orthopedic companies have realigned their strategic approach by:

  • Providing greater resources to further product development.
  • Expanding of sales and marketing resources
  • Growing new and emerging geographic regions

It is anticipated that, collectively, these elements will further open the door to the development of implantable devices that can identically reproduce the elements of the spine that need to be reinforced or replaced by artificial. Accordingly, use of spinal fusion and instrumentation is anticipated to increase in the foreseeable future and continue to represent a better than average growth area in medtech.

 

 

Screen Shot 2015-08-18 at 8.20.21 AM

Source: MedMarket Diligence, LLC; Report #M540


MedMarket Diligence, LLC, has completed an analysis entitled, “Global Market For Medical Device Technologies in Spine Surgery, 2014-2020”. The report (#M540) will be published August 21, 2015, and will be downloadable in PDF and available in print for single, site, and global licenses. The report is described in detail, with a complete table of contents and list of exhibits, at link.

Medtech fundings in August 2015

Medtech fundings for August 2015 totaled $754 million, led by the $115 million IPO of Penumbra.

Below are the top fundings for the month.

COMPANY, FUNDING PRODUCT/TECHNOLOGY
Penumbra, Inc., has filed for a $115 million initial public offering Micro-catheter based multi-modality device for the revascularization of an occluded vessel in the brain
LDR Holding has raised $86.5 million in a round of funding according to press reports Cervical discs in spine surgery
Mevion Medical Systems, Inc., has raised $58.84 million in a round of funding according to a regulatory filing Proton radiation therapy for cancer
InVivo Therapeutics Corp. has raised $50 million in equity funding from Cowan and Company according to the company Biomaterial scaffold for treatment of spinal cord injury
ReShape Medical, Inc., has raised $38 million in a Series D round of funding according to the company Dual balloons implanted in stomach endoscopically to create satiety in treatment for obesity
Advanced Inhalation Therapies has filed an IPO valued up to $36 million Drug delivery

For the complete list of medtech fundings in August 2015, see link.

For a historical list of the individual fundings in medtech, by month, since 2009, see link.

Medical technologies at startups July 2015

Below is a list of the technologies under development at medical technology startups identified in July 2015 and added to the Medtech Startup Database.

  • Wound drainage devices.
  • Robotic technology.
  • Neuromodulation devices.
  • Device to detect ischemic and hemorrhagic stroke in the pre-hospital environment.
  • RF ablation device for treatment of overactive bladder.
  • Infusion pump and sensing technologies for pain management during labor.
  • Arthroplasty devices.
  • Bone regeneration biomaterial.
  • Pedicle screws and interbody cages for spine surgery.
  • Developing a non-hormonal device to treat vaginal dryness and atrophy, particularly in breast cancer survivors and post-menopausal women.
  • Catheter technology for tissue resection in vascular and gastrointestinal endoluminal application

For a historical listing of medical technologies at startups since 2008, see link.

Where will medicine be in 2035?

(This question was originally posed to me on Quora.com. I initially answered this in mid 2014 and am revisiting and updating the answers now, in mid 2015.)

An important determinant of “where medicine will be” in 2035 is the set of dynamics and forces behind healthcare delivery systems, including primarily the payment method, especially regarding reimbursement. It is clear that some form of reform in healthcare will result in a consolidation of the infrastructure paying for and managing patient populations. The infrastructure is bloated and expensive, unnecessarily adding to costs that neither the federal government nor individuals can sustain. This is not to say that I predict movement to a single payer system — that is just one perceived solution to the problem. There are far too many costs in healthcare that offer no benefits in terms of quality; indeed, such costs are a true impediment to quality. Funds that go to infrastructure (insurance companies and other intermediaries) and the demands they put on healthcare delivery work directly against quality of care. So, whether it is Obamacare, a single payer system, state administered healthcare (exchanges) or some other as-yet-unidentified form, there will be change in how healthcare is delivered from a cost/management perspective.

From the clinical practice and technology side, there will be enormous changes to healthcare. Here are examples of what I see from tracking trends in clinical practice and medical technology development:

  • Cancer 5 year survival rates will, for many cancers, be well over 90%. Cancer will largely be transformed in most cases to chronic disease that can be effectively managed by surgery, immunology, chemotherapy and other interventions.
    [View Aug. 2015: Cancer has been a tenacious foe, and remains one we will be fighting for a long time, but the fight will have changed from virtually incapacitating the patient to following protocols that keep cancer in check, if not cure/prevent it.]
  • Diabetes Type 1 (juvenile onset) will be managed in most patients by an “artificial pancreas”, a closed loop glucometer and insulin pump that will self-regulate blood glucose levels. OR, stem cell or other cell therapies may well achieve success in restoring normal insulin production and glucose metabolism in Type 1 patients. The odds are better that a practical, affordable artificial pancreas will developed than stem or other cell therapy, but both technologies are moving aggressively and will gain dramatic successes within 20 years.
    [View Aug. 2015: Developments in the field of the “artificial pancreas” have recently gathered considerable pace, such that, by 2035, type 1 blood glucose management may be no more onerous than a house thermostat due to the sophistication and ease-of-use made possible with the closed loop, biofeedback capabilities of the integrated glucometer, insulin pump and the algorithms that drive it, but that will not be the end of the development of better options for type 1 diabetics. Cell therapy for type 1 diabetes, which may be readily achieved by one or more of a wide variety of cellular approaches and product forms (including cell/device hybrids) may well have progressed by 2035 to become another viable alternative for type 1 diabetics. See pending report.]
  • Diabetes Type 2 (adult onset) will be a significant problem governed by different dynamics than Type 1. A large body of evidence will exist that shows dramatically reduced incidence of Type 2 associated with obesity management (gastric bypass, satiety drugs, etc.) that will mitigate the growing prevalence of Type 2, but research into pharmacologic or other therapies may at best achieve only modest advances. The problem will reside in the complexity of different Type 2 manifestation, the late onset of the condition in patients who are resistant to the necessary changes in lifestyle and the global epidemic that will challenge dissemination of new technologies and clinical practices to third world populations.
    [View Aug. 2015: Despite increasing levels of attention being raised to the burden of type 2 worldwide, including all its sequellae (vascular, retinal, kidney and other diseases), the pace of growth globally in type 2 is still such that it will represent a problem and target for pharma, biotech, medical device, and other disciplines. See pending report.]
  • Cell therapy and tissue engineering will offer an enormous number of solutions for conditions currently treated inadequately, if at all. Below is an illustration of the range of applications currently available or in development, a list that will expand (along with successes in each) over the next 20 years.

    [View Aug. 2015: Cell therapy will have deeply penetrated virtually every medical specialty by 2035. Most advanced will be those that target less complex tissues: bone, muscle, skin, and select internal organ tissues (e.g., bioengineered bladder, others). However, development will have also followed the money. Currently, development and use of conventional technologies in areas like cardiology, vascular, and neurology entails high expenditure that creates enormous investment incentive that will drive steady development of cell therapy and tissue engineering over the next 20 years, with the goal of better, long-term and/or less costly solutions. See Smithers Apex report.]
  • Gene therapy will be an option for a majority of genetically-based diseases (especially inherited diseases) and will offer clinical options for non-inherited conditions. Advances in the analysis of inheritance and expression of genes will also enable advanced interventions to either ameliorate or actually preempt the onset of genetic disease.
    [View Aug. 2015: It’s a double-edged sword with the human genome. As the human blueprint, It is the potential mother lode for the future of medicine, but it remains a complex set of plans to elucidate and exploit for the development of therapies. While genetically-based diseases may readily be addressed by gene therapies in 2035, the host of other diseases that do not have obvious genetic components will resist giving up easy gene therapy solutions. Then again, within 20 years a number of reasonable advances in understanding and intervention could open the gate to widespread “gene therapy” (in some sense) for a breadth of diseases and conditions.]
  • Drug development will be dramatically more sophisticated, reducing the development time and cost while resulting in drugs that are far more clinically effective (and less prone to side effects). This arises from drug candidates being evaluated via distributed processing systems (or quantum computer systems) that can predict efficacy and side effect without need of expensive and exhaustive animal or human testing.
    [View Aug. 2015: The development of effective drugs will have been accelerated by both modeling systems and increases in our understanding of disease and trauma. It may not as readily follow that the costs will be reduced, something that may only happen as a result of policy decisions.]
  • Most surgical procedures will achieve the ability to be virtually non-invasive. Natural orifice transluminal endoscopic surgery (NOTES) will enable highly sophisticated surgery without ever making an abdominal or other (external) incision. Technologies like “gamma knife” and similar will have the ability to destroy tumors or ablate pathological tissue via completely external, energy-based systems.
    [View Aug. 2015: By 2035, technologies such as these will have measurably reduced inpatient stays, on a per capita basis, since a significant reason for overnight stays is the trauma requiring recovery, and eliminating trauma is a major goal and advantage of the NOTES technology platform. A wide range of other technologies (e.g., “gamma knife”) across multiple categories (device, biotech, pharma) will also have emerged and succeeded in the market by producing therapeutic benefit without collateral damage.]
  • Information technology will radically improve patient management. Very sophisticated electronic patient records will dramatically improve patient care via reduction of contraindications, predictive systems to proactively manage disease and disease risk, and greatly improve the decision-making of physicians tasked with diagnosing and treating patients.
    [View Aug. 2015: There are few technical hurdles to the advancement of information technology in medicine, but even in 2035, infotech is very likely to still be facing real hurdles in its use as a result of the reluctance in healthcare to give up legacy systems and the inertia against change, despite the benefits.]
  • Systems biology will underlie the biology of most future medical advances in the next 20 years. Systems biology is a discipline focused on an integrated understanding of cell biology, physiology, genetics, chemistry, and a wide range of other individual medical and scientific disciplines. It represents an implicit recognition of an organism as an embodiment of multiple, interdependent organ systems and its processes, such that both pathology and wellness are understood from the perspective of the sum total of both the problem and the impact of possible solutions.
    [View Aug. 2015: This orientation will be intrinsic to the development of medical technologies, and will increasingly be represented by clinical trials that throw a much wider and longer-term net around relevant data, staff expertise encompassing more medical/scientific disciplines, and unforeseen solutions that present themselves as a result of this approach.]

The breadth and depth of advances in medicine over the next 20 years will be extraordinary, since many doors have been recently opened as a result of advances in genetics, cell biology, materials science, systems biology and others — with the collective advances further stimulating both learning and new product development.