The Five Highest Growth Cardiovascular Procedures

#5. Cerebral thrombectomy.

The initial use of cerebral thrombectomy systems has been a disappointment. It is generally assumed that the situation with end-user adoption is likely to improve dramatically in two-three years from now, when results of the ongoing major U.S. and international trials with novel cerebral thrombectomy devices become available. Growth will exceed 11% annually through 2022.

#4 Below-the-knee drug-coated balloon angioplasty for superficial femoral artery. 

There is now a broad-based consensus among leading interventional radiologists that peripheral angioplasty using DCBs should be seen as a first-line revascularization option for both primary treatment and revision of advanced arterial occlusions in the SFA vascular territory. This will lead to better than 14% annual growth in these procedures through 2022.

#3 Transcatheter heart valve replacement. 

The use of transcatheter techniques in heart valve replacement and repair is projected to grow at over 14%, to be supported by the anticipated regulatory approval of TAVR procedures for intermediate risk patients in late 2016, and, plausibly, for standard surgical risk caseloads by 2019.

#2 Left atrial appendage endovascular closure in AFib.

The global volume of endovascular LAA closure procedures is projected to experience a robust double-digit growth expanding an average of over 14% annually, nearly doubling to an estimated 52 thousand corresponding interventions in the year 2022. Anticipated strong growth in the endovascular LAA closure utilization will be driven by increasing penetration of the Asian-Pacific (primarily Chinese and Indian) market geography with an extra boost from the recent U.S. launch of transcatheter LAA closure systems. Advances in the mature European market and emerging ROW marketplace are likely to stay below projected average growth rates.

#1 Lower extremity angioplasty and DES procedures.

Lower extremity angioplasty and drug-eluting stenting is forecast to increase almost three-fold from 2016 to 2022.

From 2015 to 2022, the cumulative global volume of PTA procedures is projected to expand an average of 4.2% per annum to year 2022. The cited expansion will be driven largely by a strong annual procedural growth in the APAC region (primarily in China and India undergoing aggressive transition to modern interventional radiology practices), which is forecast to account for about over a third of PTAs performed worldwide in 2022. The U.S. and Western European geographies can be expected to register only a moderate PTA procedural growth to be supported mostly by increasing penetration of the SFA patient caseloads with DES-based interventions, but the worldwide utilization of stented PTAs (especially these employing DES devices) is forecast to grow at significantly faster (4.2% and 19.1%) average annual rates to over 986,000 and 203,000 corresponding procedures in the year 2022.

Screen Shot 2016-08-22 at 8.44.25 AM

Source: MedMarket Diligence, Report #C500.


From “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.” Report #C500.

 

 

Endovascular Repair of TAA and AAA

Drawn from “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.”

Abdominal Aortic Aneurysm. During the past two decades, advances in interventional technologies paved the way for the advent of a considerably less invasive and risky endovascular AAA repair procedure. The procedure involves a transcatheter deployment of the specially designed endovascular prosthesis (typically combining sealing functions of the vascular graft and full or partial stenting support structure) into a defective segment of aorta with the goal of excluding the aneurysmal sac from blood circulation.

The endovascular stent-grafts (SGs) – which come both in self-expanding or balloon-expandable versions – are typically anchored to an undamaged part of the aorta both above and below the aneurysm via a compression fit or/and with a special fixation mechanism like hooks, barbs, etc.

To accommodate a great morphological diversity of aortic aneurysms the vast majority of endovascular SGs is employing a modular design concept providing the aorto iliac, bifurcated and straight tubular device configurations to cover a variety of AAA indications. Several SG systems also feature an open stenting structure at proximal end to enable suprarenal device deployment required in about 30% to 35% of all AAA cases warranting intervention.

In its idea, the endovascular repair of abdominal aortic aneurysm was intended to produce clinical outcomes comparable to these yielded by the open surgery, while reducing the associated trauma, recovery time, morbidity and the overall treatment cost. It was also generally expected that availability of less-invasive endovascular treatment option would allow to extend caseloads coverage to sizable rupture-prone AAA patient subsets who are poor surgical candidates.

Thoracic Aortic Aneurysms. Introduced in Europe and the U.S. in 1998 and 2005, accordingly, endovascular techniques for aneurysm (and aortic dissection) repair on thoracic aorta represented a logical extension of the very same basic concept and technology platforms that enabled the development of AAA stent-grafts.

Because of extremely high mortality and morbidity rates associated with TAA surgery, the need for minimally invasive endovascular treatment option was even more compelling than that in AAA case.

Similar to AAA endovascular repair devices, TAA stent-grafts are intended to minimize the risk of catastrophic thoracic aortic aneurysm rupture via effective exclusion (isolation) of the aneurismal sac from blood circulation.

Unlike AAA implants, commercially available TAA stent-grafting devices feature relatively simple tubular unibody architecture with sealing cuffs (or flanges) at proximal and distal end.

Insertion of TAA SGs is done under fluoroscopic guidance via a singular femoral puncture with the use of standard transcatheter techniques. Depending on the aneurysm morphology, one or two overlapping devices might be used to ensure proper aneurismal sac isolation.

The average ICU and hospital stays and post-discharge recovery period for endovascular TAA repair procedure are generally similar to these for AAA stent-grafting intervention.

Although practical clinical experience with endovascular repair of thoracic aortic aneurysm remains somewhat limited, findings from European and U.S. clinical studies with TAA stent-grafting tend to be very encouraging. Based on these findings, stent-grafting of rupture-prone aneurysm on ascending thoracic aorta can be performed with close to perfect technical success rate yielding radical reduction in intraoperative mortality and complications compared to TAA surgery as well as impressive improvement in long-term patient survival.

Similar to AAA endografting, the main problems associated with the use of TAA SG systems include significant incidence of endoleaks and occasional device migration which require reintervention.

Below is illustrated a comparison of the two most significant markets for AAA and TAA repair, the U.S. and Asia/Pacific. Two points are clear: (1) A significant portion of potential treatment caseload in AAA/TAA has yet to be realized, and (2) the U.S. and Asia/Pacific markets operate by different rules.

AAAandTAA

See link.

The future of cardiovascular medicine

The MedMarket Diligence has published a global analysis and forecast of cardiovascular procedures, designed to be a resource for active participants or others with interest in the future of cardiovascular medicine and cardiovascular technologies.

See the press release on Medgadget.

10 Facts About Medical Technologies that will Impress Your Friends

  1. In catheterization, a doctor can poke a hole in your leg and fix your heart.
  2. Radiosurgery can destroy a tumor and leave adjacent tissue untouched, touching the body only with energy.
  3. A doctor thousands of miles away can do surgery on you via telepresence and robotic instrumentation.
  4. Medical device implants like stents have been developed to simply dissolve over time.
  5. Doctors can see cancer via live imaging during operations to ensure that they excise it all.
  6. Type 1 diabetics may soon be able to so easily manage their condition, via combined insulin pump / glucometer that they may almost forget they have diabetes (or cell therapy may cure them!), while Type 2 diabetics will grow in number and cost to manage.
  7. Organs are already being printed, as are other tissue implants.
  8. Neuroprosthetics, exoskeletons and related technologies are enabling wheelchair-bound and other physically challenged people to walk upright, allowing amputees to control prosthetics with their mind,
  9. Almost two-thirds of the 7,000 medical device firms in the United States have fewer than 20 employees — Medtronic employs all the rest. (OK, that’s an exaggeration.)
  10. Science fiction continues to drive the imagination of medtech innovators. Decentralized diagnostics — very small, efficient devices in the hands of a doctor that will rapidly assist in diagnoses and expedite the process of intervention — are becoming pervasive, ideally embodied in the fictional “tricorder” in Star Trek.

Percutaneous Transluminal Angioplasty and Stenting Reconsidered

Originally developed by the Swiss physician Andreas Gruentzig as a less traumatic alternative to CABG, and first performed in the U.S. in 1978, percutaneous transluminal coronary angioplasty (PTCA) has soon emerged as a mainstream revascularization modality, particularly well-suited for singular concentric coronary artery occlusions.

PTCA is a minimally invasive procedure intended to restore normal (or nearly normal) blood circulation in occluded coronary arteries through a radial dilation of atherosclerotic plaque and its compression against arterial wall with transluminally-placed inflatable balloon.

In PTCA procedure, occluding coronary lesion is first crossed with appropriate guidewire, which is typically inserted under fluoroscopic guidance through a puncture in femoral artery and brought to the treatment site via iliac artery and aortic tree. A special balloon-tipped catheter is then deployed over the guidewire across the targeted lesion and repeatedly inflated to provide a required reopening of the arterial lumen. The catheter is then withdrawn and arterial puncture is secured with the use of external pressure aids or special vascular puncture closure device.

Despite some indisputable benefits of “plain old balloon angioplasty,” its ultimate clinical efficacy was seriously compromised by the disappointingly high rate of restenosis that ran as high as 50% at six months and typically required re-intervention. Introduction of coronary bare metal stents (BMS) in the early 1990s allowed to partially alleviate that problem by reducing the average restenosis rate by about one-half. Stents also helped to virtually eliminate many of the complications of conventional angioplasty, such as abrupt and unpredictable collapse and closure of the vessel, which resulted in emergency bypass surgery.

Since the introduction of bare metal coronary stents, the usage of angioplasty expanded considerably, supplanting CABG as the most commonly employed modality of myocardial revascularization.

By the beginning of the past decade, though, growth in PTCA and coronary stenting caseloads started to slow down in the U.S., Europe, and Japan reflecting significant penetration of technically feasible CAD indications and a disappointingly high rate of post-PTCA and in-stent restenosis. The problem of restenosis represented a single major handicap of coronary angioplasty/stenting, which hampered its ultimate clinical outcomes and often forced a revision and eventual conversion to bypass surgery.

In the opinion of many leading clinicians and industry’s analysts, introduction of drug-eluting stents (DES) represented the single most important innovation in endovascular therapy, since the advent of stenting and angioplasty that was bound to have a revolutionary impact on interventional cardiology practices.  In addition to effectively remedying the nagging problem of coronary restenosis (by reducing its rates to mid-low digit figures), the drug-eluting devices also enabled interventional cardiologists to successfully manage coronary indications and patient caseloads that were traditionally deemed unsuited for angioplasty and stenting. The latter include treatment of small diameter vessels, long and bifurcated lesions, left main artery and multivessel disease, as well as expanded coverage of high-risk patient cohorts with advanced diabetes, renal insufficiency/failure and recent major AMI.

Unfortunately, in the middle of the past decade, one could witness a gradually growing concerns about relatively high incidence (compared to BMS) of late and very late stent thrombosis (often leading to AMI and death) and overall safety of DES, that have prompted several warning letters, but were generally ignored due to initial exuberance about superb antirestenotic performance of DES technology. Following a release of disturbing findings from several major studies in 2006, the cited concerns appeared to reach a “critical mass” bringing the safety issues to the forefront of renewed DES debates and ultimately prompting a very significant decline in DES usage and cumulative PCI procedure volumes in the U.S. and Europe.

In the view of many leading clinicians, the higher propensity of drug-eluting stents to late (and very late) thrombosis is stemming from the very nature of current DES technology which is focused primarily on prophylaxis of binary restenosis via distortion and inhibition of natural healing processes involving neointimal outgrowth. The latter, by definition, lead to a significantly delayed epithelialization and protracted stent struts exposure to the blood stream, which have been identified as the main sources of thrombogenicity. According to multiple IVUS and pathology studies, incomplete endothelialization of DES (with associated bare strut exposure and device malapposition) is commonly observed at 3 to 4 years post-implantation, in contrast to full epithelial coverage of BMS occurring at 5 to 6 months after stent placement.

Early termination of dual (aspirin-clopidogrel) antiplatelet regimens due to patient’s non-compliance, serious complications, or other reasons appears to represent another major contributing factor to onset of late thrombotic events. Based on available data, the vast majority of DES-related thrombosis episodes tend to occur at 1.0 to 3.5 years post-implantation, or after the recommended 12-month period of dual antiplatelet therapy. According to clinical literature, other factors implicated in the occurrence of late and very late DES thrombosis include presence of inflammatory polymer on stent, incomplete drug elution, rate of drug elution, cytotoxicity of chosen drug, as well as poor DES patient selection (e.g., utilization of DES in high-risk diabetics, and their off-label uses in small diameter vessels, patients with long and bifurcated lesions, etc.).

Most of the cited problems were effectively addressed by the next-generation DES devices that combine sophisticated cobalt and platinum alloy stenting platforms and biodegradable drug coatings with super-low-profile delivery and minimally traumatic deployment systems.

It is assumed that clinical efficacy and utility of DES technology would be significantly enhanced with the advent of specialty bifurcation-targeting devices, vascular healing-focused biopharmaceutical coatings, and in increased adoption of fully biodegradable stenting systems.


For forecasts of off-pump CABG, on-pump CABG, primary PCI with stenting, and drug-eluting stent-based PCI procedures (separately for U.S. Western Europe, Asia/Pacific and Rest of World), as well as all major cardiovascular surgical and interventional procedures, see Report #C500, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.”

Medtech fundings for August 2016

Below are the top fundings for medical technology companies thus far in August 2015, which are led by the $93 million funding of CVRx, followed by the $49 million funding of Auris Surgical Robots. See link for the complete list.

Please revisit this post (and refresh your browser) to see additional fundings during the month.

Screen Shot 2016-08-15 at 9.48.41 AM

For a comprehensive list of medtech fundings since 2009, see link.

 

New Global Cardiovascular Procedures Report Reveals Medtech Outlook

MedMarket Diligence has published, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022.”

See link for report description, sources, table of contents, and list of exhibits. The report may be purchased for download.

The report details the therapeutic procedures that address acute and chronic conditions affecting myocardium and vascular system, with relevant prevalences, incidence rates, separate procedure counts for surgical versus interventional and other key splits of the procedure volume.

Screen Shot 2016-08-12 at 9.48.46 AMThe report offers current assessment and projected procedural dynamics (2015 to 2022) for primary market geographies (e.g., United States, Largest Western European Countries, and Major Asian States) as well as the rest-of-the-world.

Each set of forecasts is accompanied by discussion per condition of the changing clinical practice and technology adoption rates, procedural limitations or drivers competitively, the surgical-interventional balance, and the resulting market outlook for cardio manufacturers.

Excerpts available on request.

Surgical and interventional cardiovascular procedures, worldwide

In August 2016, MedMarket Diligence will be releasing Report #C500, “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”. The report details prevalence, incidence, and caseload for the following procedures, forecast to 2022, and examines the clinical practice trends, technologies emerging on the market, and the dynamics leading to trends in procedures utilization and technology adoption.

Surgical and interventional procedures included:

  • Coronary artery bypass graft (CABG) surgery
  • Coronary angioplasty and stenting
  • Lower extremity arterial bypass surgery
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting
  • Peripheral drug-coated balloon angioplasty
  • Peripheral atherectomy
  • Surgical and endovascular aortic aneurysm repair
  • Vena cava filter placement
  • Endovenous ablation
  • Mechanical venous thrombectomy
  • Venous angioplasty and stenting
  • Carotid endarterectomy
  • Carotid artery stenting
  • Cerebral thrombectomy
  • Cerebral aneurysm and AVM surgical clipping
  • Cerebral aneurysm and AVM coiling & flow diversion
  • Left Atrial Appendage closure
  • Heart valve repair and replacement surgery
  • Transcatheter valve repair and replacement
  • Congenital heart defect repair
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices
  • Pacemaker implantation
  • Implantable cardioverter defibrillator placement
  • Cardiac resynchronization therapy device placement
  • Standard SVT & VT ablation
  • Transcatheter AFib ablation

In very general terms, the category “cardiovascular diseases” (CVD) refers to a variety of acute and chronic medical conditions resulting in the inability of cardiovascular system to sustain an adequate blood flow and supply of oxygen and nutrients to organs and tissues of the body. The CVD conditions could be manifested by the obstruction or deformation of arterial and venous pathways, distortion in the electrical conducting and pacing activity of the heart, and impaired pumping function of the heart muscle, or some combination of circulatory, cardiac rhythm, and myocardial disorders

The scope of this report covers surgical and interventional therapeutic procedures commonly used in the management of acute and chronic conditions affecting myocardium and vascular system. The latter include ischemic heart disease (and its life threatening manifestations like AMI, cardiogenic shock, etc.); heart failure; structural heart disorders (valvular abnormalities and congenital heart defects); peripheral artery disease (and limb and life threatening critical limb ischemia); aortic disorders (AAA, TAA and aortic dissections); acute and chronic venous conditions (such as deep venous thrombosis, pulmonary embolism and chronic venous insufficiency); neurovascular pathologies associated with high risk of hemorrhagic and ischemic stroke (such as cerebral aneurysms and AVMs, and high-grade carotid/intracranial stenosis); and cardiac rhythm disorders (requiring correction with implantable pulse generators/IPG or arrhythmia ablation).

The report offers current assessment and projected procedural dynamics (2015 to 2022) for primary market geographies (e.g., United States, Largest Western European Countries, and Major Asian States) as well as the rest-of-the-world.

The cited procedural assessments and forecasts are based on the systematic analysis of multiplicity of sources including (but not limited to):

  • latest and historic company SEC filings, corporate presentations, and interviews with product management and marketing staffers;
  • data released by authoritative international institutions (such as OECD and WHO), and national healthcare authorities;
  • statistical updates and clinical practice guidelines from professional medical associations (like AHA, ACC, European Society of Cardiology, etc.);
  • specialty presentations at major professional conferences (e.g., TCT, AHA Scientific Sessions, EuroPCR, etc.);
  • publications in major medical journals (JAMA, NEJM, British Medical Journal, etc.) and specialty magazines (CathLab Digest, EP Digest, Endovascular Today, etc.);
  • findings from relevant clinical trials;
  • feedbacks from leading clinicians (end-users) in the field on device/procedure utilization trends and preferences; and
  • policy papers by major medical insurance carriers on uses of particular surgical and interventional tools and techniques, their medical necessity and reimbursement.

Surgical and Interventional Procedures Covered in the report include:

  • Coronary artery bypass graft (CABG) surgery;
  • Coronary angioplasty and stenting;
  • Lower extremity arterial bypass surgery;
  • Percutaneous transluminal angioplasty (PTA) with and without bare metal and drug-eluting stenting;
  • Peripheral drug-coated balloon angioplasty;
  • Peripheral atherectomy;
  • Surgical and endovascular aortic aneurysm repair;
  • Vena cava filter placement
  • Endovenous ablation;
  • Mechanical venous thrombectomy;
  • Venous angioplasty and stenting;
  • Carotid endarterectomy;
  • Carotid artery stenting;
  • Cerebral thrombectomy;
  • Cerebral aneurysm and AVM surgical clipping;
  • Cerebral aneurysm and AVM coiling & flow diversion;
  • Left Atrial Appendage closure;
  • Heart valve repair and replacement surgery;
  • Transcatheter valve repair and replacement;
  • Congenital heart defect repair;
  • Percutaneous and surgical placement of temporary and permanent mechanical cardiac support devices;
  • Pacemaker implantation;
  • Implantable cardioverter defibrillator placement;
  • Cardiac resynchronization therapy device placement;
  • Standard SVT & VT ablation; and
  • Transcatheter AFib ablation

In 2016, cumulative worldwide volume of the aforementioned CVD procedures is projected to approach 15.05 million surgical and transcatheter interventions. This will include:

  • Roughly 4.73 million coronary revascularization procedures via CABG and PCI (or about 31.4% of the total),
  • Close to 4 million percutaneous and surgical peripheral artery revascularization procedures (or 26.5% of the total);
  • About 2.12 million cardiac rhythm management procedures via implantable pulse generator placement and arrhythmia ablation (or 14.1% of the total);
  • Over 1.65 million CVI, DVT, and PE targeting venous interventions (representing 11.0% of the total);
  • More than 992 thousand surgical and transcatheter heart defect repairs and valvular interventions (or 6.6% of the total);
  • Close to 931 thousand acute stroke prophylaxis and treatment procedures (contributing 6.2% of the total);
  • Over 374 thousand abdominal and thoracic aortic aneurysm endovascular and surgical repairs (or 2.5% of the total); and
  • Almost 254 thousand placements of temporary and permanent mechanical cardiac support devices in bridge to recovery, bridge to transplant, and destination therapy indications (accounting for about 1.7% of total procedure volume).

During the forecast period, the total worldwide volume of covered cardiovascular procedures is forecast to expand on average by 3.7% per annum to over 18.73 million corresponding surgeries and transcatheter interventions in the year 2022. The largest absolute gains can be expected in peripheral arterial interventions (thanks to explosive expansion in utilization of drug-coated balloons in all market geographies), followed by coronary revascularization (supported by continued strong growth in Chinese and Indian PCI utilization) and endovascular venous interventions (driven by grossly underserved patient caseloads within the same Chinese and Indian market geography).




The latter (venous) indications are also expected to register the fastest (5.1%) relative procedural growth, followed by peripheral revascularization (with 4.0% average annual advances) and aortic aneurysm repair (projected to show a 3.6% average annual expansion).

Geographically, Asian-Pacific (APAC) market geography accounts for slightly larger share of the global CVD procedure volume than the U.S. (29.5% vs 29,3% of the total, followed by the largest Western European states (with 23.9%) and ROW geographies (with 17.3%). Because of the faster growth in all covered categories of CVD procedures, the share of APAC can be expected to increase to 33.5% of the total by the year 2022, mostly at the expense of the U.S. and Western Europe.

Screen Shot 2016-08-12 at 9.48.46 AM

Source: MedMarket Diligence, LLC; Report #C500.

However, in relative per capita terms, covered APAC territories (e.g., China and India) are continuing to lag far behind developed Western states in utilization rates of therapeutic CVD interventions with roughly 1.57 procedures per million of population performed in 2015 for APAC region versus about 13.4 and 12.3 CVD interventions done per million of population in the U.S. and largest Western European countries.

See “Global Dynamics of Surgical and Interventional Cardiovascular Procedures, 2015-2022”, Report #C500 (publishing August 2016).

List of high growth medtech products

Below is a table with a list of the market segments demonstrating greater than 10% compound annual growth rate for the associated region through 2022, drawn from our reports on tissue engineering & cell therapy, wound management, ablation technologies, stroke, peripheral stents, and sealants/glues/hemostats. Products with over 10% CAGR in sales are shown in descending order of CAGR.

RankProductTopicRegion
1General, gastrointestinal, ob/gyn, othertissue/cellWW
2Ophthalmologytissue/cellWW
3Organ Replacement/ Repairtissue/cellWW
4Urologicaltissue/cellWW
5Neurologicaltissue/cellWW
6Autoimmune Diseasestissue/cellWW
7CV/ Vasculartissue/cellWW
8Bioengineered skin and skin substituteswoundRest of A/P
9Peripheral drug-eluting stents (A/P)peripheral interventionalA/P
10Peripheral drug eluting stentsperipheral interventionalRoW
11Peripheral drug-eluting stents (US)peripheral interventionalUS
12Negative pressure wound therapywoundGermany
13Hydrocolloid dressingswoundRest of A/P
14Cancertissue/cellWW
15Foam dressingswoundRest of A/P
16Growth factorswoundRest of A/P
17Alginate dressingswoundRest of A/P
18Dentaltissue/cellWW
19Bioengineered skin and skin substituteswoundJapan
20Hemostatssealants, glues, hemostatsA/P
21Skin/ Integumentarytissue/cellWW
22Bioengineered skin and skin substitutessealants, glues, hemostatsUS
23Bioengineered skin and skin substitutessealants, glues, hemostatsWW
24Film dressingswoundRest of A/P
25Surgical sealantssealants, glues, hemostatsA/P
26Hydrogel dressingswoundRest of A/P
27TAA Stent graftsperipheral interventionalA/P
28Negative pressure wound therapywoundRoW
29Biological gluessealants, glues, hemostatsA/P
30FoamwoundRoW
31HydrocolloidwoundGermany
32AAA Stent graftsperipheral interventionalA/P
33Cerebral thrombectomy systemsstrokeA/P
34High-strength medical gluessealants, glues, hemostatsA/P
35Carotid artery stenting systemsstrokeA/P
36Cardiac RF ablation productsablationA/P
37Alginate dressingswoundGermany
38Peripheral venous stentsperipheral interventionalA/P
39Cerebral thrombectomy systemsstrokeUS
40Left atrial appendage closure systemsstrokeA/P
41Cyanoacrylate gluessealants, glues, hemostatsA/P
42Foam dressingswoundRest of EU
43Foam dressingswoundKorea
44Cryoablation cardiac & vascular productsablationA/P
45Bioengineered skin and skin substituteswoundGermany
46Thrombin, collagen & gelatin-based sealantssealants, glues, hemostatsA/P
47Cardiac RF ablation productsablationRoW
48Bioengineered skin and skin substituteswoundRoW
49Microwave oncologic ablation productsablationA/P

Note source links: Tissue/Cell, Wound, Sealants/Glues/Hemostats, Peripheral Stents, Stroke, Ablation.

Source: MedMarket Diligence Reports

Components used in surgical sealants

While fibrin is a biological sealant that has been harnessed by several companies to provide tissue sealing, a wide variety of other components and component combinations have been developed for sealant use.

Below are sealant formulations from selected participants in the market for surgical sealants:

Sealant Components by Manufacturer

CompanySealant component(s)
AdhesysPolyurethane
CoheraUrethane & lysine
EndomedixDextran and chitosan biopolymers
Gecko BiomedicalProprietary, light-activated, synthetic elastomer
GrifolsFibrin sealant
BaxterHuman fibrinogen and thrombin
EthiconFibrin sealant
BardHydrogel
TakedaFibrin sealant
The Medicines CompanyFibrin sealant, and synthetic sealant
CryoLifeBovine serum albumin and glutaraldehyde adhesive
HyperbranchActivated polyethylene glycol polyethlyeneimine
Integra LifesciencePolyethylene glycol hydrogel
LifeBondPolymer hydrogel matrix
Ocular TherapeutixPolyethylene glycol and trilysine
SealantisAlga-mimetic tissue adhesives

Source: MedMarket Diligence, LLC; Report #S290.